Market Garden POD is rising.   This is a weekly cooperative basket program that will provide produce and products from Microbe Rich soils.  We suspect this POD will be offered to the public the first of the new year.     Our baskets will be freshly harvested produce from our certified Microbe Rich gardens.      The COOP Pod is connected to the Market Garden POD. It is all connected and that is our business values structure…the value of our intentions.So, this is a preliminary announcement for locals interested in being a member of this POD. Please send me your email if so!  (    We will start slow and gentle at first and grow as the gardens do.


This POD is about providing a weekly basket of Microbe Rich Grown Food and gourmet products. We will have baskets for singles, couples and families. We are creating and designing this as we go..this will be an experiment in how to service you and nourish the soils at the same time.

A lot of what we are doing is moving with the microbes. Our mission is to change the path of war to raising the “little good guys” in mass. Whether that be the little good guys of the soils or little good guy humans (souls).   When you work and love a garden, you have to create. For me, that is most precious experience. Been doing this for decades now. All that learning, discovering and enjoying. It honestly is my most favourite action of my day….garden to my tummy. I love to alchemize the garden for enjoyment of the senses.

These skills of experience are a part of the Living Ground. Everything is connected. In the last 2 years I have discovered the microbes and learned how to harness and make them happy. They work with the plants to ensure bounty. I harvest the plant with joy. I make food and medicine. I am apart of the microbes and they are a part of me. It is really quite simple.

Living Ground will offer gourmet, nutrient dense, taste bud delight foods. We made Basil Infused Sun Dried Tomatoes, started a wine of basil vinegar (watermelon homemade wine) that is florescent green, buttered up a turmeric pepper horseradish sauce. There is plenty and more than plenty if you try! Last night, we had a meal that literally knocked our taste and digestion into healthy gear.

This is what this about! Diversity. Growing! Alchemizing! Healing! Loving! Deliciousness!   It is all connected.

And, as it is connected, this is a part of the Cooperative POD ..the weekly basket program. It is beyond organic and always alchemized.

We’re in trouble. Our over-reliance on fossil fuels and our taste for foods with a high carbon footprint is causing disruptive climate change. Our throwaway society has flooded the land and seas with plastic pollution. And we face a growing public health crisis triggered by the rise of disease-causing microbes that we cannot kill with antibiotics.

Now for the good news. Living Ground is entering the busy-ness of selling food…but our primary intention to provide a system where people can have ready and affordable access to gut food – that is food grown in microbe rich soils.

Our guts are a real brain. They form part of an intelligent control system which manages our bodies, particularly our appetite and so decides how much and what food we want to eat and how much and where we store fat. Our guts are also home to the bulk of our immune system. Poor guts health is at the source of modern chronic diseases such as diabetes, obesity and its related heart attacks, dementia etc. A health gut is really important.

But to have a healthy gut means we need the right biology in the first place and we need to feed it the right sort of food. When people find out how gut food is grown the whole idea puts most people off, which is why you can’t buy gut food from the supermarket or in a bottle from the chemist.

Healthy gut biology starts in the guts of creatures that live in the soil.   Read that again!     This microbe biology passes from the guts of the microbes and into the plants where if we eat them soon after they are harvested they will enter out guts and the plants will provide them with food so they will flourish.

We, and all animals, have been doing this for millions of years but the whole idea is totally at odds with our modern antiseptic society so eating gut food will always be for a minority group.   And, humans will diminish!    We can not duplicate Nature as much as science and technology tries.

We know how to grow gut food, you have to have soil which is full of creature of the soil.   To feed the creatures, the soils must be full of organic matter.  We don’t have to be concerned with minerals..there is plenty of that!

And we have to avoid chemicals which will harm the beneficial biology – modern chemicals may not hurt us but they can be a disaster for micro-biology.  And, I will add that Natural insecticides also are harmful.   

And we have to eat the plants shortly after they are harvested before the beneficial biology dies.

All this is a more expensive process than modern chemical industrial farming and supermarket system and to many people quite revolting, which is why we don’t see gut food products on super market shelves.

Good and nourishing food is really about growing food to feed our brain. To do that we have to feed the microbes that already are living in our gut – that’s a pre-biotic.

But we also have to breed new microbes in the soil, which will go into the plants that we will eat and hence from part of our gut brain – that’s a pro-biotic.

To breed these microbes we have to feed and water them – for that we need plants that take the energy from the sun and covert it into microbe food. The plant will exchange this food for the food it needs. So, the microbes go get the plants food.    Now the snag is that there are good bugs which will make us strong and healthy and bad bugs which at best just want to use as a comfy home to breed in – but unfortunately they often get it wrong and kill us.

To breed the good bugs – without the bad bugs taking over – we have to manage the conditions, which means food and water. The good bugs like oxygen and a little water….but not too wet (aerobic) while the bad bugs breed when it is wetter and no oxygen (anaerobic). How is oxygen transported in the human and what does it need to transport oxygen? Iron. But parasites love stored iron. Is this a rabbit hole or what?

Let’s get to the nitty gritty of true health! That means a paradigm shift. It is a 360 on our beliefs about health and microbes. Well, remember, Douglas Adams wrote : “The answer to the ultimate question of life, the universe and everything is 42.” We probably only know 5% or less of how Nature works..but we do have some good information to change our ways NOW. And, NOW IS THE TIME TO DO IT!!!

Will you be apart of this soil revolution?


Mainstream alternative health and television news outlets have really highlighted hormone D (vitamin D) the past few years. As always, the goal is to inject more confusion into people’s minds about natural health.⁣
I have always been concerned about people popping vitamins for health.    I don’t think we know enough about nutrition to be able to isolate and make a pill.    Nature always provides the whole picture unknown to our sciences at this point.   Vitamin D is one I am learning about and it is called the  “sunshine” vitamin for a reason.    The phrase “vitamin D” is smurf language. It means nothing! Vitamin D is a psy-op term to confuse you. Are we talking about D3 (cholecalciferol), 25(OH)D (calcidiol), or 1,25-dihydroxycholecalciferol (calcitriol)? ⁣

Biology of the sunshine vitamin

“Vitamin D is unique because it can be made in the skin from exposure to sunlight.[3,8–10] Vitamin D exists in two forms. Vitamin D2 is obtained from the UV irradiation of the yeast sterol ergosterol and is found naturally in sun-exposed mushrooms. UVB light from the sun strikes the skin, and humans synthesize vitamin D3, so it is the most “natural” form. Human beings do not make vitamin D2, and most oil-rich fish such as salmon, mackerel, and herring contain vitamin D3. Vitamin D (D represents D2, or D3, or both) that is ingested is incorporated into chylomicrons, which are absorbed into the lymphatic system and enter the venous blood. Vitamin D that comes from the skin or diet is biologically inert and requires its first hydroxylation in the liver by the vitamin D-25-hydroxylase (25-OHase) to 25(OH)D.[3,11] However, 25(OH)D requires a further hydroxylation in the kidneys by the 25(OH)D-1-OHase (CYP27B1) to form the biologically active form of vitamin D 1,25(OH)2D.[3,11] 1,25(OH)2D stimulates intestinal calcium absorption.[12] Without vitamin D, only 10–15% of dietary calcium and about 60% of phosphorus are absorbed. Vitamin D sufficiency enhances calcium and phosphorus absorption by 30–40% and 80%, respectively.[3,13]”

We are still in kindergarten understanding Vitamin D language. There are over 14 different kinds of 25Ds and three different pathways that it follows: hydroxylation, lactonization and epimerization. We only ever hear smurf language from influencers and “health experts”. We never hear secosteroid hormone D talked about in these terms.⁣
The most important thing to note is that D3 supplements will raise 25D (the one they measure) which will then raise your 1,25D (the one they rarely measure). Saying that D3 supplements won’t raise your 1,25D is like saying giving bakers more flour to bake with (25D) isn’t going to make more bread (1,25D). Its a completely nonsensical statement. D3 is a SUBSTRATE to make the other molecules and guess what? You don’t choose what your body makes. It makes what it needs based upon your pathogen load. Even before this situation everyone has been dealing with chronic infections.⁣
When 1,25D gets too high you get an increase in metallothionein production which binds up copper 1000x stronger than zinc (Karasawa et al, 1987). Excess 1,25D from supplementing “Vitamin D” decreases energy production in your kidneys and opens them up to iron-induced damage (Zager et al, 1999). 25D and 1,25D in excess both suppress hepcidin and ferritin synthesis which increases iron storage in the cell (Barcchetta et al, 2014).⁣
With Smurf “Vitamin D” language we also never hear of Lumisterol, Tachysterol or Suprasterol, three compounds that you make when ultraviolet light (sunshine) hits the 7 dehydrocholesterol in your skin. Choose UV light over oral or topical D3 supplements.

This article was written by Tim Spector from King’s College London and was originally published by The Conversation.

Everyone loves D, the sunshine vitamin. Doctors, patients and the media have been enamoured with vitamin D supplements for decades. As well as their clear benefit in curing severe vitamin D deficiencies, endless headlines hail their magical ability to reduce a vast range of conditions from dementia to cancer.

Medical specialists such as myself have been promoting supplements to our patients with osteoporosis and other bone problems for decades. Many food products contain artificially added vitamin D with the aim of preventing fractures and falls and improving muscle strength although the vitamin also has been claimed to boost the immune system and reduce ageing. I used to sometimes take vitamin D myself and recommended it to my family to survive sun-starved winters.

However, a new paper on the risks that vitamin D may pose finally has convinced me that I was wrong. My view on vitamin supplements and the multi-billion dollar industry behind them altered radically after I began researching my book, The Diet Myth, in 2013. The industry and its PR is supported by celebrities who reportedly have high-dose vitamins drip fed into their veins, and around 50 percent of Americans and Britons take them regularly. But surprisingly, there is a lack of evidence to support the health benefit claims of virtually all vitamin supplements on the market.

One study based on the large SELECT trial suggested that supplements such as vitamin E and selenium actually increased prostate cancer in some men. And last year massive analyses combining 27 studies on half a million people concluded that taking vitamin and mineral supplements regularly failed to prevent cancer or heart disease. Not only are they a waste of money for the majority of us – but if taken in excessive quantities they can actually hasten an early death, increasing your risk of heart disease and cancer.

Virtually no vitamins or supplements have actually been shown to have any benefit in proper randomised trials in normal people without severe deficiencies. Rare exceptions have been lutein nutrients for macular degeneration, a common cause of blindness – and vitamin D, the golden boy of vitamins.

Since the 1980s, researchers (including myself) have written thousands of papers, associating a lack of our favourite vitamin with over 137 diseases. A 2014 BMJ report, however, found these links mainly to be spurious.

Won’t do you any harm?
Our genetic makeup influences vitamin D levels. We can use this information to tell if naturally low vitamin D levels might actually increase the risk of disease (rather than be a consequence of it). The evidence so far suggests (with the possible exception of multiple sclerosis and some cancers) that low vitamin D levels are either irrelevant or merely a marker of the disease.

Until now we haven’t worried about giving people extra vitamin D because we thought “it might help anyway and of course (as it’s a vitamin) doesn’t do you any harm”. With our increasing knowledge, we should now know better. Recent studies in the last five years have suggested that even calcium supplements as well as being ineffective in preventing fracture can increase the risk of heart disease.

While several studies in normal people failed to find any protective effects from vitamin D, others have been more worrying. One 2015 randomised study of 409 elderly people in Finland suggested that vitamin D failed to offer any benefits compared to placebo or exercise – and that fracture rates were, in fact, slightly higher.

The usual prescribed dose in most countries is 800 to 1,000 units per day (so 24,000-30,000 units per month). However, two randomised trials found that at around 40,000 to 60,000 units per month Vitamin D effectively became a dangerous substance.

One study involving over 2,000 elderly Australians, which was largely ignored at the time, and the one just published found that patients given high doses of vitamin D or those on lower doses that increased vitamin D blood levels within the optimal range (as defined by bone specialists) had a 20-30% increased rate of fractures and falls compared to those on low doses or who failed to reach “optimal blood levels”.

Explaining exactly why vitamin D supplements are often harmful is harder. Some people who don’t take supplements have naturally high blood levels which may be due to them spending large amounts of time outdoors in the sun or eating oily fish regularly – and there is no evidence that this is harmful. Higher than average levels can also be due to genes which on average influence about 50 percent of the differences between people. So our obsession with trying to bring everyone up to a standard normal target blood level is seriously flawed, in a similar way to our one-size-fits-all approach to diet.

Until now we have believed that taking vitamin supplements is “natural” and my patients would often take these while refusing conventional “non-natural” drugs. Our body may not view supplements in the same misguided way. Vitamin D mainly comes from UV sunlight converted slowly in our skin to increase blood levels or is slowly metabolised from our food.

In contrast, taking a large amount of the chemical by mouth or as an injection could cause a very different and unpredictable metabolic reaction. For example, our gut microbes are responsible for producing around a quarter of our vitamins and a third of our blood metabolites and also respond to changes in vitamin levels picked up by receptors in our gut lining. Any artificial addition of large amounts of chemicals will upset some sensitive immune processes.

The news that even my favourite vitamin can be dangerous is a wake-up call. We should be taking our worldwide abuse of these chemicals much more seriously rather than routinely adding them to foods. The billions we waste on these products, assisted by the poorly regulated but rich and powerful vitamin industry should be spent on proper healthcare – and people should be educated to go in the sunshine and eat a diverse range of real food instead. For 99 percent of people, this will provide all the healthy vitamins they will ever need.

Tim Spector is a professor of Genetic Epidemiology at King’s College London.

This article was originally published by The Conversation. Read the original article.

How beneficial microbes in the soil, food and gut are interconnected and how agriculture can contribute to human health

The human gut microbiome is a complex system of gazillions of bacteria, fungi, viruses,p rotists and archaea that has an enormous effect on our metabolism, health and well‐being. The same holds true for the plant rhizosphere, the crucial parts below ground: roots are immersed in a soil microbiome that provides plants with important nutrients, protects them from disease and pathogens and helps plants to adapt to environmental changes (Fig 1). And, similar to faecal transplants in humans, soil transplants can have a drastic effect on plant health and growth. Moreover, plant and human microbiomes are linked to each other: since the gut and the soil microbiome share similar bacteria phyla and since microbes from fruits, salads and vegetables join the human gut microbiome, the plant microbiome can affect the gut microbiome and thereby human health (Fig 2). The current and well‐known concept of a healthy diet—one that includes a lot of fibre, minerals and vitamins from fruits and vegetables—should therefore be expanded to consider plant microbes that not only benefit plant health but via food also human health. Vice versa, as much as antibiotics can severely change the human gut microbiome and its function, the use of herbicides, fungicides and pesticides in food production has drastic effects on the plant microbiomes in the soil and on the fruits and vegetables that we eat.


Figure 1. The gut microbiota in humans and the soil and rhizome microbiota in plants exist under similar environmental conditions.



Figure 2. The direct and indirect effects of the plant microbiota on the human gut microbiome.

The gut microbiome

A human body consists of about ten times more bacterial cells than human cells, the majority of which are in the gut. The ratio of microbial to human genes is even more impressive, counting more than 3 million microbial genes compared with 22,000 human genes. The gut microbiome starts to develop before birth and becomes fully established 2–3 years into childhood. The formation of the infant microbiome is not only important for gut function, but also crucial for the development of the systemic and mucosal immune system thereby influencing infant and eventually adult health (Lozupone et al2012).

… since microbes from fruits, salads and vegetables join the human gut microbiome, the plant microbiome can affect the gut microbiome and thereby human health.

The original view of a simple mutualistic interaction between gut cells and microbial cells has given way to a much more complex and dynamic view of a close symbiotic interaction between humans and bacteria. The intestinal epithelial and mucosal immune cells recognize and interact with select bacterial species which contribute to the proper functioning of the human immune system. Microbially generated metabolites not only help the gut to extract nutrients from food, but can also influence immune function (Postler & Ghosh, 2017). In fact, a dysfunctional gut microbiome has been shown to cause or contribute to various gastrointestinal diseases, inflammatory or immune‐mediated diseases, diabetes, obesity, atopic diseases and chronic kidney diseases (Lozupone et al2012). Generally, microbiome richness and diversity are directly associated with human health, but this simple equation needs to be considered with care.

An important step towards our current understanding was the finding that healthy and sick gut microbiomes differ in their microbial composition. Although gut microbiomes contain up to 1,000 different microbial species and show large variations between individuals, 99% of the gut microbiota belongs to only 30–40 species (Lozupone et al2012) that change in positive or negative ways in response to external or environmental factors. Novel sequencing techniques now allow the detection and quantification of virtually all gut microbes, but we still know almost nothing about the role and function of many microbial species, let alone the role of viruses that also populate the gut ecosystem.

Changes of the microbiota in historical times

As humans and human civilization changed over millennia so did the human gut microbiota in response to changes in diet. The gut microbiome of contemporary hunter–gatherer societies for instance shows drastic changes during the year reflecting the changes in food supply. Moreover, major differences can also be observed between the microbiota of female and male members of these societies: the microbiota of women resembles more those of herbivores, while the male members have a more carnivore‐like microbiome. The changes in gut microbiota from earlier to modern civilizations also reflect changes in hygiene, which can still be observed between urban and rural communities. Modern lifestyle with improved hygiene, processed food and the widespread use of medicines, notably antibiotics, seems to have had a major effect on human gut microbiome diversity during the past decades, overall reducing its variety.

Importantly, what people eat has a much stronger influence on the gut microbial composition than genetics: members of the same family living in different locations show larger differences in their microbiomes than genetically unrelated individuals who share the same household and similar lifestyle and nutrition.

Microbes enhance food quality and content

Humans can only synthesize 11 of the 20 essential amino acids themselves; they rely on food intake for the other nine along with all 13 essential vitamins. Most of these amino acids and vitamins are retrieved from meat, eggs, milk products, fruits and vegetables, but a few essential compounds are produced by microbes—which are important producers of essential amino acids and vitamins themselves. For example, cobalamin (Vitamin B12) cannot be produced by either plants or animals; it is synthesized by microbes in the plant microbiotas or in the gut of ruminant animals.

In addition to primary metabolites, amino acids and vitamins, many microbes also produce a large variety of chemicals known as secondary metabolites or natural products. Among the best‐known of these compounds are antibiotics but also immunosuppressants, anticancer and anti‐inflammatory drugs.

Yet, plants are at least as capable as microbes in producing secondary metabolites; overall plants synthesize more than hundred thousand compounds, many of which are used as pharmaceuticals or are important for human health. Flavonoids, a highly diverse class of plant compounds that are present in many fruits, vegetables or nuts, have many biological activities including anti‐inflammatory, anticancer and anti‐viral properties. Omega‐3 (n‐3) polyunsaturated fatty acids (PUFA) are found in nuts and seeds of twenty different plants, including soy bean, rape seed or flax. PUFA reduce the risk of cardiovascular diseases, blood pressure and inflammatory reactions. Another class of important plant products are conjugated linoleic acid, L‐carnitine, choline or sphingomyelin, which all positively affect the gut microbiome (Postler & Ghosh, 2017). Interestingly, many plants produce only tiny amounts of these secondary metabolites, but beneficial microbes associated with their plant host can boost their production. The interaction of microbes and plants thereby influences food quality, taste and texture (Flandroy et al2018).

Where does our food come from?

Food production has changed tremendously during the past century. Today’s agricultural production systems are mostly large‐scale monocultures of a few elite crop varieties that require fertilizers, herbicides and pesticides to ensure a high yield. Most of these high‐yield breeds have lost important secondary metabolites that protect plants and humans alike. A good example is the domestication of plants of the Brassicacae family, such as cabbage and cauliflower, in which the amount of glucosinolates has been reduced to eliminate their bitter taste. Yet, glucosinolates not only help the plant to resist to pathogens but are also suspected to be a prebiotic anticancer metabolite (Blum et al2019).

Modern lifestyle with improved hygiene, processed food and the widespread use of medicines, […] seems to have had a major effect on human gut microbiome diversity during the past decades

Industrial agriculture requires increasing amounts of fertilizers and pesticides to maintain yield. This seems to be the result and/or the cause of a poor microbial diversity in the soil. Soil erosion and climate change also affect microbial biodiversity and contribute to the loss of large areas of arable land and their microbial populations (Blum et al2019). In this way, crop plants today lack many of their important symbiotic partners to produce or increase the contents of vitamins, minerals, antioxidants and other metabolites that are beneficial for both plant and human health.

Soil is the ultimate source from which plants recruit beneficial microbes for the rhizosphere and phyllosphere, that is the root and shoot surfaces, but also for the inner plant organs (endosphere), including fruits and seeds. Plant rhizo‐, phyllo‐ and endosphere microbes not only increase nutrient use efficiency and thereby crop yield, they are also involved in enhancing resistance against herbivores, insects, bacterial and fungal pathogens and even nematodes or viral infections (Blum et al2019).

The use of herbicides, excessive mineral fertilization and improper land management have serious effects on microbial communities. A good example is glyphosate that has been used for more than 40 years in agriculture. This chemical inhibits enoylpyruvylshikimate‐5‐phosphate (EPSP) synthase, an enzyme of the shikimate pathway that is responsible for the biosynthesis of aromatic amino acids in plants. EPSP synthase is present in all plants but not in humans, which makes glyphosate an ideal herbicide. The application of glyphosate to kill weeds is linked with the use of glyphosate‐resistant crops which has helped considerably to assure high crop yields.

But the use of glyphosate might come with a price. Although the acute toxicity of glyphosate to humans is low, the fact that humans are exposed to it over long terms prompted the WHO to classify glyphosate as a potential carcinogenic in 2015. Importantly, glyphosate is also an antimicrobial, as both bacteria and fungi rely on the shikimate pathway for aromatic amino acid production. A number of reports show negative effects on beneficial soil, rhizosphere and endosphere microbes, including arbuscular mycorrhizal fungi and nitrogen‐fixing Rhizobium spp. (Van Bruggen et al2018). Glyphosate also seems to inhibit a number of soil, plant and gut beneficial microbes at much lower concentrations than pathogenic microbes. In terms of the human gut microbiome, such inhibition was observed for the beneficial microbes Bifidobacterium sp. and Enterococcus sp. compared with pathogenic strains of Clostridium sp. and Salmonella sp. (Van Bruggen et al2018). Overall these indirect effects of glyphosate on soil, plant and human microbes might affect human health.

Food quality beyond fibres, minerals and vitamins

The protein‐rich input from increased meat consumption in Western diets also massively affects the gut microbiome, whereby certain microbes suppress beneficial competitors and change our eating behaviour to favour more unhealthy food. Much of the current discussion on maintaining a diverse and healthy gut microbiome is focused on eating a healthy diet, which is defined by a high content of fibre, minerals and vitamins. However, this still leaves out an important aspect of food.

Most of our daily food comes from industrial agriculture and has been exposed to herbicides, fertilizers and a large array of pesticides to obtain high yields. Pesticides are a large class of chemical compounds that include fungicides, bactericides, nematicides, molluscicides, avicides, rodenticides and animal repellents. A large literature is available to show the negative effects of many commonly used pesticides on human health. For example, various carbamates, pyrethroids and neonicotinides have endocrine‐disrupting activity and negative effects on reproduction in animals and humans (Nicolopoulou‐Stamati et al2016). However, many beneficial microbes are also among the targets of pesticides with direct and indirect implications on soil, plant and food safety.

The interaction of microbes and plants thereby influences food quality, taste and texture.

For example, most copper‐based fungicides have a deleterious effect on nitrogen‐fixing bacteria (Meena et al2020). Similarly, long‐term application of organomercurials has negative effects on cellulolytic fungal species. Triarimol and captan decrease the content of Aspergillus fungi that help plants to grow and develop. Carbendazim is highly toxic to Trichoderma harzianum, a potent biocontrol agent against the soil‐borne fungal pathogens FusariumPythium and Rhizoctonia and many fungicides also inhibit hyphal growth and root colonization by arbuscular mycorrhizal fungi. The insecticides chlorpyrifos, phosphamidon, malathion, fenthion, methyl phosphorothioate, parathion, chlorfluazuron, cypermethrin or phoximin have negative effects on soil and rhizosphere microbiota at field‐recommended concentrations (Meena et al2020).

Many fresh fruit, salads and vegetables are stored and shipped, often over long distances, before they arrive at the supermarket. Long storage and shipping periods, however, are not possible without treating fruit and vegetables with a variety of pesticides and antibiotics for preservation. Not only will some of these chemicals make their way through food into the human gut, but they also kill off the plant microbiota.

Agriculture uses about four times more antibiotics than human medicine. This massive (ab)use of antibiotics in farming, mostly to enhance growth and health of livestock, has greatly contributed to the emergence of resistant bacteria. Not only do antibiotics excreted by animals change microbial function and composition of soil, waterways and other biotopes but also the antibiotic resistance genes can spread to other microbes via horizontal gene transfer (Jechalke et al2014). The consumption of fresh produce from fields fertilized with manure from antibiotics‐treated animals can thus spread resistance genes to the human gut microbiome and further the emergence of multi‐drug‐resistant human pathogens. The widespread application of pesticides and herbicides could similarly increase the risk of new pathogens and diseases against both plants and humans.

… crop plants today lack many of their important symbiotic partners to produce or increase the contents of vitamins, minerals, antioxidants and other metabolites…

Similarities between root and gut microbiomes

Recent research suggests that the root and gut microbial communities exist under similar conditions (Mendes & Raaijmakers, 2015). Both are open systems characterized by gradients of oxygen, water and pH that create a diversity of different niches. Both systems inherit their microbial members from the environment: food in humans and soil in plants, respectively. Plant and gut systems are populated by a multitude of similar bacterial phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria) and, similar to human faecal transfer, transplantation of beneficial microbes from disease‐suppressive soils can protect plants against various diseases (Mendes & Raaijmakers, 2015). Research on different mammalian herbivores and carnivores indicates that the gut microbiome recruits some of its members from eating raw plant material. Root and gut microbes synthesize essential amino acids, vitamins and many other secondary metabolites that modulate their host immune system: as such, the plant and gut microbiomes can be considered as meta‐organs with paramount importance for the health of their hosts.

Most of our daily food comes from industrial agriculture and has been exposed to herbicides, fertilizers and a large array of pesticides to obtain high yields.

It is therefore important to better understand the functions and roles of the hundreds of different microbial species in the complex interaction network with their hosts. Of equal importance is the question how to establish and maintain a healthy microbiome. At the same time, the re‐integration of beneficial microbes into agriculture could contribute to providing healthy food in a sustainable manner so as to help reduce the amount of fertilizer, pesticides and herbicides being used (Bender et al2016). Moreover, given the food link, humans would also benefit from eating unprocessed organic food since it supplies beneficial microbes along with secondary metabolites. Research on the integral role of microbiomes on their host’s metabolism and health should therefore not stop at the human gut microbiome but expand to the microbiota of plants and their function in plant growth and development. Given the food link, such an effort would benefit both plants and humans.


The work was supported by the baseline fund BAS/1/1062‐01‐01 to HH from the King Abdullah University of Science and Technology.


  • 1. Bender SF, Wagg C, Van Der Heijden MGA (2016An underground revolution: biodiversity and soil ecological engineering for agricultural sustainabilityTrends Ecol Evol 31440452Crossref PubMed Web of Science®Google Scholar
  • 2. Blum WEH, Zechmeister‐Boltenstern S, Keiblinger KM (2019Does soil contribute to the human gut microbiome? Microorganisms 7E287Crossref PubMed Web of Science®Google Scholar
  • 3. Flandroy L, Poutahidis T, Berg G, Clarke G, Dao MC, Decaestecker E, Furman E, Haahtela T, Massart S, Plovier H et al (2018The impact of human activities and lifestyles on the interlinked microbiome and health of humans and of ecosystemsSci Total Environ 62710181038Crossref CAS PubMed Web of Science®Google Scholar
  • 4. Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K (2014Fate and effects of veterinary antibiotics in soilTrends Microbiol 2253645Crossref CAS PubMed Web of Science®Google Scholar
  • 5. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012Diversity, stability and resilience of the human gut microbiomeNature 489220230Crossref CAS PubMed Web of Science®Google Scholar
  • 6. Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnický M, Sharma M, Yadav G, Jhariya M, Jangir C et al (2020Impact of agrochemicals on soil microbiota and management: a reviewLand 934Crossref Web of Science®Google Scholar
  • 7. Mendes R, Raaijmakers JM (2015Cross‐kingdom similarities in microbiome functionsISME J 919051907Crossref CAS PubMed Web of Science®Google Scholar
  • 8. Nicolopoulou‐Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016Chemical pesticides and human health: the urgent need for a new concept in agricultureFront Public Health 4148Crossref PubMed Web of Science®Google Scholar
  • 9. Postler TS, Ghosh S (2017Understanding the holobiont: how microbial metabolites affect human health and shape the immune systemCell Metab 26110130Crossref CAS PubMed Web of Science®Google Scholar
  • 10. Van Bruggen AHC, He MM, Shin K, Mai V, Jeong KC, Finckh MR, Morris JG (2018Environmental and health effects of the herbicide glyphosateSci Total Environ 616–617255268Crossref PubMed Web of Science®Google Scholar