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ABSTRACT Suramin is 100 years old and is still being used to treat the first stage
of acute human sleeping sickness, caused by Trypanosoma brucei rhodesiense.
Suramin is a multifunctional molecule with a wide array of potential applications,
from parasitic and viral diseases to cancer, snakebite, and autism. Suramin is also an
enigmatic molecule: What are its targets? How does it get into cells in the first
place? Here, we provide an overview of the many different candidate targets of
suramin and discuss its modes of action and routes of cellular uptake. We reason
that, once the polypharmacology of suramin is understood at the molecular level,
new, more specific, and less toxic molecules can be identified for the numerous po-
tential applications of suramin.

KEYWORDS Trypanosoma brucei, human African trypanosomiasis, polypharmacology,
sleeping sickness, suramin

SURAMIN, THE FRUIT OF EARLY MEDICINAL CHEMISTRY

When suramin was introduced for the treatment of African sleeping sickness in
1922, it was one of the first anti-infective agents that had been developed in a

medicinal chemistry program. Starting from the antitrypanosomal activity of the dye
trypan blue, synthesized in 1904 by Paul Ehrlich, Bayer made a series of colorless and
more potent derivatives. Molecule 205 was suramin (Fig. 1), synthesized by Oskar
Dressel, Richard Kothe, and Bernhard Heymann in 1916. Sleeping sickness (also known
as human African trypanosomiasis [HAT]) was at the forefront of research at that time,
not a neglected disease as it is today, and the development of suramin was a
breakthrough for the emerging field of chemotherapy. While the history of suramin has
been reviewed elsewhere (1), we focus here on the many potential applications of
suramin and its enigmatic mode of action.

SURAMIN AS AN ANTIPARASITIC DRUG

Suramin is still being used for the treatment of Trypanosoma brucei rhodesiense
infections (2). However, it does not cross the blood-brain barrier and therefore is
administered only for the first (hemolymphatic) stage of sleeping sickness, when the
trypanosomes have not yet invaded the patient’s central nervous system (CNS). The
standard treatment regimen for suramin is an initial test dose of 4 to 5 mg/kg of body
weight followed by five weekly doses of 20 mg/kg (but not more than 1 g) injected
intravenously (i.v.) (3). Suramin is also used for surra (mal de caderas), caused by
Trypanosoma evansi, in particular for the treatment of camels (4). The treatment
regimen is a single i.v. injection of 10 mg/kg suramin, i.e., about 6 to 10 g (4). In vitro,
suramin also has some activity against Trypanosoma cruzi (5). However, it is not used for
Chagas’ disease, and studies in mice have even suggested that suramin would exac-
erbate the disease (6). In vitro activity of suramin against Leishmania major and
Leishmania donovani has recently been described (7). Furthermore, suramin blocks host
cell invasion by the malaria parasite Plasmodium falciparum. This was observed for both
the invasion of erythrocytes by P. falciparum merozoites (8) and the invasion of HepG2
hepatoma cells by P. falciparum sporozoites (9).
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Suramin had been in use for river blindness, caused by the filarial parasite On-
chocerca volvulus (10). It acts both on microfilariae and, to a greater extent, on adult
worms (11, 12). However, suramin was subsequently replaced by the less toxic, and
orally bioavailable, ivermectin (13, 14). The adverse effects of suramin are indeed
manifold, including nephrotoxicity, hypersensitivity reactions, dermatitis, anemia, pe-
ripheral neuropathy, and bone marrow toxicity (3, 15). However, despite its potential
toxicity, the lack of bioavailability, and the absence of lead-like properties (Fig. 1),
suramin has found a surprising variety of repurposing applications. Table 1 provides an
overview of the biological activities of suramin, and Table 2 lists clinical trials performed
with suramin.

SURAMIN AS AN ANTIVIRAL AGENT

The antiviral and antibacteriophage activities of suramin have been known since the
mid-20th century (16, 17). Soon after the discovery of retroviruses, suramin was found
to inhibit retroviral reverse transcriptase (18), which served as a rationale to test
suramin against human immunodeficiency virus (HIV). Suramin protected T cells from
HIV infection in vitro (19), and in AIDS patients, it reduced the viral burden in some of
the study subjects; however, no improvement of the immunological features and
clinical symptoms was achieved (20–22). Later, suramin was found to inhibit host
cell attachment through binding to the HIV-1 envelope glycoprotein gp120, indi-
cating that the in vitro protection against HIV infection is mediated through
inhibition of viral entry (23).

Suramin also inhibits the binding of dengue virus to host cells through a direct
effect on the viral envelope protein (24). Inhibition of host cell attachment was also
found for herpes simplex (25) and hepatitis C (26) viruses, which explained the
previously reported protective effects of suramin against in vitro herpes simplex virus
infections (27) and in vivo infections of ducks with duck hepatitis B virus (28). Similar to
the experience with HIV, suramin had been initially tested against hepatitis viruses due
to its inhibitory effect on the viral DNA polymerase (29, 30). However, in a small clinical
trial, suramin was found to be ineffective and toxic in chronic active hepatitis B patients
(31). Suramin neutralized enterovirus 71 (EV71) in cell culture and in a mouse model by
binding to capsid proteins (32–34).

Suramin also has potential against emerging viruses. It was shown to inhibit
both RNA synthesis and replication in chikungunya virus (35). In vitro, sur-
amin conferred protection if present at the time of infection, and this was
attributed to a reduction of viral host cell binding and uptake (36). In the murine

FIG 1 Suramin structure and medicinal chemistry parameters. Except for its good solubility in water, suramin lacks
lead-like properties as defined, e.g., by Lipinski’s rule of 5 (186).
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model, suramin led to a reduction of pathognomonic lesions if injected prior to
chikungunya virus infection (37). Suramin also inhibited host cell invasion by Ebola
virus (38) and Zika virus, even when added after viral exposure of the cell cultures
(39).

TABLE 1 Diseases and pathogens susceptible to suramin

Disease and/or pathogen

Activity ina:

Cell culture Animal model Patient

Parasitic infections
T. b. rhodesiense HAT X X X
T. brucei gambiense HAT X X X
Surra, T. evansi X X NA
River blindness, O. volvulus X X X
T. cruzi X
Leishmania spp. X
P. falciparum X

Viral infections
Hepatitis virus X X X
AIDS, HIV X X
Herpes simplex virus X X
Chikungunya virus X X
Enterovirus 71 X X
Dengue virus X
Zika virus X
Ebola virus X

Neoplastic diseases
Non-small cell lung cancer X X
Breast cancer X X
Bladder cancer X X
Brain tumors X X
Prostate cancer X X X

Other
Snakebite X X
Arthritis X X
Autism NA X X

aX, activity; NA, not applicable.

TABLE 2 Clinical trials with suramin

Registry ID or referencea Disease Phaseb Yr

NCT02508259 Autism spectrum disorders I, II 2015
NCT01671332 Non-small cell lung cancer II 2012
NCT01038752 Non-small cell lung cancer II 2010
NCT00083109 Recurrent renal cell carcinoma I, II 2004
NCT00066768 Recurrent non-small cell lung cancer I 2003
NCT00054028 Recurrent breast cancer I, II 2002
NCT00006929 Recurrent non-small cell lung cancer II 2000
NCT00006476 Bladder cancer I 2000
NCT00004073 Brain and CNS tumors II 1999
NCT00002921 Adrenocortical carcinoma II 1997
NCT00003038 Advanced solid tumors I 1997
NCT00002723 Prostate cancer III 1996
NCT00002881 Prostate cancer III 1996
NCT00002652 Multiple myeloma and plasma cell neoplasm II 1995
NCT00002639 Brain and CNS tumors II 1995
NCT00001381 Bladder neoplasms, transitional cell carcinoma I 1994
NCT00001266 Prostatic neoplasm II 1990
NCT00001230 Filariasis Obs. 1988
42 Solid tumors Obs. 1987
20 AIDS Obs. 1987
31 Hepatitis B Obs. 1987
aTrials with a registered NCT number are from ClinicalTrials.gov; others are from the literature.
bObs., observational study.
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SURAMIN AGAINST CANCER

The first studies on the effects of suramin on neoplasms in animals were carried out
in the 1940s; mice engrafted with lymphosarcoma developed significantly smaller
tumors when simultaneously treated with suramin (40). In the 1970s, it was shown that
suramin could enhance the actions of cyclophosphamide and adriamycin in mice
engrafted with Ehrlich carcinoma (41). The first clinical trial with suramin was carried
out in the 1980s in advanced-stage adrenal and renal cancer patients (42). Around half
of the patients showed either partial or minimal responses, and none showed complete
remission. Nevertheless, a number of subsequent clinical trials with suramin were
carried out (Table 2). In particular, suramin was tested against prostate cancer (43–51),
non-small cell lung cancer (52), breast cancer (52), bladder cancer (53, 54), and brain
tumors (55, 56). Most of the studies were based on the potential of suramin to act as
an antagonist of growth factors (57–59), which are often overexpressed by tumors. In
addition, suramin directly exhibits cytostatic activity on cultured tumor cells (60–62).
However, the initial clinical tests did not warrant the further development of suramin
as an anticancer monotherapy.

Subsequent tests focused on suramin as a chemosensitizer, based on the findings
that, at subcytotoxic levels (�50 �M), it enhanced the efficacy of anticancer drugs, such
as mitomycin C, taxol, or doxorubicin, in ex vivo cultures and in animal models (63–65).
Suramin combined with taxol inhibited invasiveness and prevented metastasis in a
xenograft mouse model (66). Different explanations are conceivable for the chemosen-
sitizing effects of suramin on tumor cells, including inhibition of telomerase (67) or
inhibition of fibroblast growth factors and angiogenesis (68). A phase II clinical study
was performed in patients with advanced, drug-resistant non-small cell lung cancer
treated with taxol or carboplatin; supplementation with nontoxic doses of suramin did
not overcome drug resistance (69). Randomized controlled studies to validate the use
of suramin as a chemosensitizer in chemotherapy-naive lung cancer patients remain to
be performed. A combination of estramustine, docetaxel, and suramin gave promising
results in hormone-refractory prostate cancer patients (51).

SURAMIN AS AN ANTIDOTE

Three of the many biological activities of suramin support its potential use as a
protective agent: the inhibition of thrombin, the inhibition of phospholipase A2, and
the inhibition of purinergic signaling. Several vipers possess toxins that mimic thrombin
(70), perfidiously triggering the coagulation cascade in mammalian blood. Suramin not
only inhibits thrombin itself (71), but also the thrombin-like proteases of snake venom
(72), and was therefore proposed as an antidote for snakebite. Other common constit-
uents of metazoan venoms are phospholipases A2, which convert phospholipids into
lysophospholipids. Again, suramin inhibits mammalian phospholipase A2 (73), as well
as the orthologues from snake venom (74–76) and bee venom (77), suggesting that it
can act as an antidote. A certain degree of protection from venoms by suramin was
confirmed in mouse models (77–79). The potential use of suramin as an antidote is
attractive, given the high global burden of snakebites (80) and the current shortage of
antivenom (81).

Suramin’s ability to block P2 purinergic, G protein-coupled receptors (82) may
counteract the action of neurotoxins that trigger arachidonic acid signaling, e.g., via
phospholipase A2 activity (83). A possible explanation is that suramin prevents the
activation of ATP receptors at the motor nerve ending, which otherwise would depress
Ca2� currents and reduce acetylcholine release at the presynaptic membrane (84).
Suramin was also proposed to serve as a neuroprotective agent (85, 86) and as an
antidote for kidney toxicity during cancer chemotherapy (87) and, based on its anti-
apoptotic effect, to protect against liver failure (88). Suramin also inhibits connexin
channels of the tight junction, thereby suppressing ATP release and protecting cells
from pore-forming bacterial toxins, such as hemolysin (89). The suramin analogs NF340
and NF546 were cardioprotective in a mouse model for heart graft rejection, presum-
ably via inhibition of the purinergic G protein-coupled receptor P2Y11 (90).
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FURTHER POTENTIAL USES OF SURAMIN

Suramin was found to have beneficial effects in a rat arthritis model (91) and to
suppress fear responses in the rat (92). It also promoted the expansion of T cells during
immunization of mice and was therefore considered as a small-molecule adjuvant for
vaccination (93). Based on the cell danger hypothesis, suramin has recently been tested
for the treatment of autism spectrum disorders (ASD). The cell danger hypothesis
suggests that a systemic stress response that involves mitochondria and purinergic
signaling contributes to the development of psychopathologies like autism. Suramin
had been shown to act as an inhibitor of purinergic signaling (94) and mitochondrial
function (95) and was therefore proposed as a potential therapy for ASD (96). First tests
in mouse models showed correction of symptoms in juveniles (96), as well as in adults
(97). A first small human trial was carried out and, even though difficult to quantify,
showed improvement of ASD symptoms (98).

(TOO) MANY TARGETS

Suramin is a large molecule that carries six negative charges at physiological pH (Fig.
1). It is likely to bind to, and thereby inhibit, various proteins (99). Thus, the many and
diverse potential applications of suramin reflect its polypharmacology. Indeed, a large
number of enzymes have been shown to be inhibited by suramin (Table 3). Suramin
inhibits many glycolytic enzymes (100, 101), enzymes involved in galactose catabolism
(PubChem BioAssay no. 493189 [187]), and enzymes of the Krebs cycle (102). Suramin
further decreases the activities of a large number of enzymes involved in DNA and RNA
synthesis and modification: DNA polymerases (103, 104), RNA polymerases (103, 105,
106), reverse transcriptase (18, 103), telomerase (67), and enzymes involved in winding/
unwinding of DNA (107, 108) are inhibited by suramin, as well as histone- and
chromatin-modifying enzymes like chromobox proteins (109), methyltransferases (110),
and sirtuin histone deacetylases (111). Suramin is also an inhibitor of other sirtuins (112)
and protein kinases (113, 114), glutaminase (PubChem BioAssay no. 624170), phospho-
lipase A2 (72, 77), protein tyrosine phosphatases (115), lysozyme (116), and different
serine and cysteine proteases (117–119). For caspases, cysteine proteases involved in
apoptosis, suramin was described as acting as either inhibitor or activator (120, 121).
Suramin further inhibits the Na�,K�-ATPase and other ATPases (122–124), certain
classes of GABA receptors (125, 126), and several G protein-coupled receptors (127),
including P2 purinoceptors and follicle-stimulating hormone receptor (128, 129).
Suramin also showed inhibitory effects against components of the coagulation cascade
(71, 130) and the complement system (131–133) and against deubiquitinating enzymes
(PubChem BioAssay no. 504865 and 463106). It also interacts with prion protein,
inhibiting conversion into the pathogenic form PrPSc (134). Besides its many inhibitory
activities, suramin also activates certain nuclear receptors that act as transcription
factors (135) and intracellular calcium channels (136).

ENIGMATIC MECHANISMS OF ACTION AGAINST AFRICAN TRYPANOSOMES

Somewhat ironically, much less appears to be known about the targets of suramin
in African trypanosomes, where it has been in use for a century, than those in tumor
cells or viruses. Suramin was shown to inhibit glycolytic enzymes of T. brucei, with
selectivity over their mammalian orthologues, in particular, hexokinase, aldolase, phos-
phoglycerate kinase, and glycerol-3-phosphate dehydrogenase (100). Intriguingly, the
trypanosomal enzymes have higher isoelectric points (�9), which is due to extra
arginines and lysines that are absent in the mammalian orthologues (137). These
residues form positively charged surface-exposed “hot spots” that were proposed to be
bound by the negatively charged suramin (100). Inhibition of trypanosomal glycolysis
by suramin is in agreement with the dose-dependent inhibition of oxygen consump-
tion and ATP production observed in trypanosomes isolated from suramin-treated rats
(138). However, the glycolytic enzymes of T. brucei are localized inside glycosomes
(139), and it is unclear how suramin could penetrate the glycosomal membrane or if
suramin could bind to glycolytic enzymes in the cytosol before they were imported into
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TABLE 3 Putative target proteins of suramin, biological processes, and mechanisms

Putative targeta Reference(s)

Metabolism
6-Phosphofructokinase 100
Fructose-l,6-bisphosphate aldolase 100
Glucose-6-phosphate isomerase 100
Glyceraldehyde-3-phosphate dehydrogenase 100
Glycerol-3-phosphate dehydrogenase 100, 141
Glycerol kinase 100
Hexokinase 100
Phosphoglycerate kinase 100
Pyruvate kinase 101
Triose-phosphate isomerase 100
Succinic dehydrogenase 102
Galactokinase 493189b

Glutaminase 624170b

Glycerophosphate oxidase 141
Nucleoside triphosphate diphosphohydrolases 1 and 2 123, 124, 157–160
Nucleotide pyrophosphatases/phosphodiesterases 1 and 3 161

Nucleic acids
DNA polymerase alpha 103, 104
DNA polymerase beta 103, 104
DNA polymerase gamma 103
DNA polymerase delta 104
DNA polymerase I 103, 104
Terminal deoxynucleotidyltransferase 103
DNA primase 103
DNA-dependent RNA polymerase 103, 106
RNA-dependent RNA polymerase 105
Reverse transcriptase 18, 103
Telomerase 67
RNase H 162
Flavivirus RNA helicase 39, 107, 163
DNA topoisomerase II 108
Tyrosyl-DNA phosphodiesterase 1 164
Human antigen R 165
DNA-binding protein MCM10 166

Epigenetics
Chromobox protein homologue 1 beta 488953b

Chromobox protein homologue 7 109
Histone methyltransferases 110, 167
Precorrin-4 C(11)-methyltransferase 168
Sirtuins 1, 2, and 5 111, 112, 169

Protease
Kallikrein 119
Alpha thrombin 71
Human neutrohphil cathepsin G 118
Human neutrophil elastase 118
Human neutrophil proteinase 3 118
Rhodesain 117
Caspases 1, 2, 8, 9, and 10 120, 121, 170, 171
Falcipain 2 172

Extracellular matrix
Hyaluronidase 173, 174
Iduronate sulfatase 174
�-Glucuronidase 174

Membrane channels and signaling
Nonjunctional connexin 43 hemichannels 89
Na�,K� ATPase 122
Cystic fibrosis transmembrane regulator 175
Ryanodine receptor 1 136
GABAA receptors 125, 126
P2X purinergic receptors 94

(Continued on next page)
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glycosomes (140). Alternative targets proposed for the trypanocidal effect of suramin
are glycerophosphate oxidase (141, 142); a serine oligopeptidase termed OP-Tb (143);
and REL1 (144), the RNA-editing ligase of the trypanosome’s kinetoplast. It is unclear
how suramin would pass the inner mitochondrial membrane, but suramin inhibited
oxidative phosphorylation in mitochondrial preparations of the trypanosomatid
Crithidia fasciculata (145). Suramin also appeared to inhibit cytokinesis in T. brucei, as
indicated by the finding that suramin treatment resulted in an increased number of
trypanosomes with two nuclei (146).

UPTAKE ROUTES OF SURAMIN INTO CELLS

The negative charges of suramin (Fig. 1) not only promote binding to various
proteins, they also prevent diffusion across biological membranes. However, the ma-
jority of targets (Table 3) are intracellular, and radiolabeled suramin was shown to be
taken up by human endothelial and carcinoma cells (147, 148) and by T. brucei
bloodstream forms (138, 149). Suramin is not a substrate of P-glycoprotein (150) or of
any other known transporter. Thus, suramin must be imported by endocytosis. Mam-
malian cells can take up suramin in complex with serum albumin by receptor-mediated
endocytosis (148). This had originally also been thought to happen in T. brucei (138).
However, the trypanosomes do not take up albumin by receptor-mediated endocytosis
(151), and LDL (low-density lipoprotein) was proposed to act as the vehicle instead
(149). Suramin bound to LDL and inhibited the binding and uptake of LDL, while LDL
enhanced the uptake of suramin in bloodstream form T. brucei (149). In contrast,
overexpression in procyclic T. b. brucei of Rab4, a small GTPase involved in the recycling
of endosomes, decreased suramin binding and uptake without affecting LDL binding or
uptake (152). In the same study, overexpression of a mutant Rab5, which was locked in
the active GTP-bound form, increased LDL uptake without affecting suramin uptake
(152). These findings indicated that, at least in the procyclic trypanosomes of the tsetse
fly midgut, LDL and suramin are imported independently of each other.

The development of genome-wide RNA interference (RNAi) screens in bloodstream
form T. brucei combined with next-generation sequencing offered new opportunities to
address the genetics of drug resistance. This approach identified genes whose silencing
reduced sensitivity to suramin (153). They included a number of genes encoding
endosomal and lysosomal proteins, in agreement with uptake of suramin through
endocytosis. The invariant surface glycoprotein ISG75 was identified as a likely receptor

TABLE 3 (Continued)

Putative targeta Reference(s)

P2Y purinergic receptors 94
N-Methyl-D-aspartate receptor 176
DNA-dependent protein kinase 113
Protein kinase C 114
Protein tyrosine phosphatases 115
VIP receptor 127
Follicle-stimulating hormone receptor 129
Pregnane X receptor 135
Diadenosine tetraphosphate hydrolase 177

Other
Prion (PrpC) 134
Complement factors 119, 131–133
Phospholipase A2 72, 178
Lysozyme 116
Antimicrobial peptide CM15 179
Ubiquitin carboxyl-terminal hydrolases 1 and 2 504865; 463106b

HSP 60 chaperonin system 180, 181
GroEL chaperonin system 180, 181

aSuramin acts as an inhibitor or antagonist in all cases except the pregnane X receptor and the ryanodine
receptor. The mode of action against caspase is controversial.

bPubChem BioAssay; last retrieved 29 April 2019.
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of suramin, since knockdown of ISG75 in bloodstream form T. brucei decreased suramin
binding and suramin susceptibility (153). ISG75 is a surface protein of unknown
function whose abundance is controlled by ubiquitination (154). Thus, there appear to
be (at least) two pathways for receptor-mediated endocytosis of suramin in T. brucei
bloodstream forms: either directly, with ISG75 as the receptor, or after binding of
suramin to LDL, together with the LDL receptor.

CONCLUSIONS

Suramin remains controversial. Is its polypharmacology a liability or an asset? Is it
toxic or protective? Dated or timeless? Whatever the verdict on suramin, there is hardly
another molecule with as many biological activities. The list of potential targets is
indeed impressive, and the publication stream on suramin is not stagnating. The large
majority of papers are not about trypanosomes or trypanosomiasis (Fig. 2). The list of
potential targets has to be taken with a grain of salt, though, since the negative charges
of suramin, and its promiscuity in protein binding, can cause all kinds of artifacts.
Suramin can dissolve Matrigel (155), resulting in a false-positive signal in cell-based
screening campaigns that use Matrigel for support, e.g., for inhibitors of angiogenesis
(155). On the other hand, suramin’s high affinity for albumin (156) may give false-
negative results in cell-based tests that contain mammalian serum. However, in spite of
the various confounders, a number of different drug-target interactions for suramin
have been experimentally validated and are directly supported by crystal structures
(Table 4).

Several routes of investigation of the bioactivities of suramin have culminated in
clinical trials with healthy volunteers (i.e., phase I) or patients (i.e., phases II and III)

FIG 2 Publications on suramin in PubMed. Cumulative numbers are shown for papers on suramin and
trypanosomes or trypanosomiasis (search term “trypanosom*”), cancer (“cancer OR tumor”), viruses
(“virus OR viral OR hiv OR aids”), and toxins (“toxin OR venom”). Other papers on suramin are also shown.
There is no saturation yet, and it is surprising that only a minority of the publications on suramin actually
deal with trypanosomes.

TABLE 4 Solved structures of suramin complexed to target proteins

PDB ID Protein Reference

6CE2 Myotoxin I from Bothrops moojeni 75
4YV5 Myotoxin II from B. moojeni 74
1Y4L Myotoxin II from Bothrops asper 72
3BJW Ecarpholin S from Echis carinatus 76
1RML Acid fibroblast growth factor 182
NAa Human epidermal growth factor (hEGF) 183
4X3U CBX7 chromodomain 109
3BF6, 2H9T Human thrombin 184
2NYR Human sirtuin homologue 5 112
3PP7 Leishmania mexicana pyruvate kinase 101
3GAN Arabidopsis thaliana At3g22680 NA
3UR0 Murine norovirus RNA-dependent RNA polymerase 105
4J4V Pentameric bunyavirus nucleocapsid protein 185
4J4R Hexameric bunyavirus nucleocapsid protein 185
aNA, not applicable.
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(Table 2). However, to our knowledge, none of these trials was a striking success, and
it is unclear whether suramin will ever find medical applications outside the field of
parasitology. However, molecules that act similarly to suramin may be identified via
target-based screening once the mode of action is understood—new molecules that
are more specific and less toxic and possess better pharmacological properties than
suramin. Thus, it will be important to dissect the polypharmacology of suramin at the
molecular level. We hope that the compiled list of targets (Table 3) will serve this
purpose.
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