Introduction to Mushrooms and Mycology  by Danny Miller, education@psms.org

Hunting for mushrooms can be a very rewarding hobby, not just for edibles but for the wide array of colours, shapes and odors that they come in. You might find mushrooms that are bright red, purple, green or almost any colour of the rainbow. They might smell of sweet almonds, black licorice, grape bubble gum or garlic. Almost immediately after beginning to mushroom hunt I was finding fascinating species very easily and wondering “Am I just lucky today or have these always been here and I just haven’t noticed?” This is a common story. The woods are full of the most amazing things that are getting overlooked all the time because we’re so caught up in our own little world. All it takes is a moment to look around to start discovering and being inspired by the fascinating world of fungi.

 

 

I regret I cannot demonstrate the odors on this web page.

Learning to Identify

People ask me all the time how to quickly tell which mushroom is which. All of the books describe how important it is to spend a few hours getting a spore print of a gilled mushroom, and carefully comparing dozens of different characters to make sure they all match your mushroom before coming to any conclusions. You might spend all day keying out a mushroom and coming to a tentative conclusion, and then go to hand it to an experienced identifier and from across the room they will tell you what it is. How did they do that? They didn’t have any time to examine the mushroom and determine if the cap was scaly or only fibrillose or if the stem was pruinose or not, and they certainly didn’t take a spore print. This is because the experienced identifier has learned to recognize the mushroom as you learn to recognize your friends and family. When cousin Steve walks up to you, you don’t think “Ah, mid-length black hair, glasses and freckles, age range 40-49, that’s cousin Steve”. You have synthesized everything in your mind about Steve that makes Steve Steve to the point where you can just recognize him. This will eventually happen to you for certain mushrooms. You can probably already identify a store bought Safeway brown button mushroom without thinking about it too much. That does not mean that you shouldn’t take the time to make spore prints and carefully go through mushroom keys. You cannot learn to recognize a mushroom by only reading about it, you have to play with it and look at it carefully while answering questions about it to really get to know it. Just like you didn’t really get to know cousin Steve by looking at his picture in the family album, you got to know him because he came to visit every year for the holidays. So when you ask the identifier how they could tell what the mushroom was, and they say “I’m not sure, it’s hard to explain”, they are not being mean. It’s just as if somebody asked you to describe how to recognize cousin Steve because they need to pick him up at the airport – it would be hard for you to describe Steve in a way that would allow somebody else to pick him out of a crowd.

One of the most important things a mushroom book or website can do is help you tell mushrooms apart from each other. A technical monograph will describe many mushrooms in extreme detail, but that’s not enough. You might have to read several pages of notes on two species and take notice yourself about what the differences are (much might be few). The next step is to realize which of those differences are important and which aren’t. The best criteria are those which are easily noticeable and reliably different between the two mushrooms. I think the most useful part of a guide book is the section that talks about the mushroom and its close lookalikes, like the “Comments” section in Mushrooms Demystified or the “Notes” and “Similar” sections of the MatchMaker program. That is what I have tried to do on these pages – focus on the unique characters of each mushroom that allow you to most quickly tell them apart, and I have placed photos of all the similar species side by side for easy comparison, unlike the typical guide book which often lists them in alphabetical order.

Ecology and Habitat

Something that is very important to take note of if you are going to try and identify a mushroom is… did the mushroom sprout out of the ground, or is it growing out of a piece of wood? There are two main ways that mushrooms get nutrition and figuring that out can be an important part of identifying it.

First of all we have to talk about what a mushroom really is. Fungi are organisms that are different from both plants and animals, although we used to think they were a kind of plant (because they are attached to the ground and can’t wander around freely). But it turns out that genetically, fungi are closer to animals than they are to plants – we both have chitin in our cell walls, for instance. The actual fungus grows as a network of threads called mycelium that permeate the ground and can grow for miles, sort of like the roots of a plant but smaller than the width of a human hair. When conditions are right, and the fungus feels it has a good chance at reproducing, it will expend the energy to grow a mushroom (like a fruit or a flower that a plant grows). Because of the vast difference in size between the invisible threads of the fungus itself and its fruit, the mushroom, it almost seems analogous to a tree growing an apple that is the size of the Empire State Building. Unlike plants that sprout flowers and fruit like clockwork every year, not all fungi will grow mushrooms every year.  Since the organism is invisibly tiny, you can imagine that it takes a LOT of energy to create a “fruit” that is orders of magnitude more massive than itself, so they are fussy about when they fruit. Nobody understands fully what triggers them. Some mushrooms are only seen to sprout once every ten or twenty years, while others come up reliably several times a year. It has something to do with the temperature and humidity and soil acidity being ideal, but “ideal” is different for different fungi. So you might say that while the millions of species of plants and animals all look different, and you can tell them apart fairly easily, the millions of species of fungi all look almost identical to the naked eye (invisibly small thread networks) but their fruits all look different. So when we study mushrooms, we are studying the different fruiting bodies of different fungi, not the fungus itself. Many fungi never make fruiting bodies big enough to see very well. For instance, the mold Penicillin is just a thin layer of fuzz, and some species are much smaller than that. Most mushroom clubs, mushroom books and mushroom pages like this one are mostly concerned with those fungi that make large fruiting bodies that you are likely to notice (and care about). But there are many more thousands of closely related species that go mostly unnoticed because no part of them ever gets big enough to get your attention.

You will see tiny mushrooms almost all year round (e.g. Mycena) but the larger, fleshier fruit bodies mostly fruit during certain times of the year because they take a lot more energy to produce and perhaps the fungus is being fussier about when to sprout, wanting to make sure the conditions are right.

Some mushrooms are mycorrhizal, meaning that they live in a symbiotic relationship with trees and other plants. Their mycelium actually grows in with the network of tree roots. Remember back in grade school when you learned that plants make their own food using the chlorophyll that makes them green to turn sunlight into sugar? Well, that’s not the whole story. If the tree only ate sugar it would be as unhealthy as you or I living on an all candy diet. It turns out the mushroom’s thin mycelium are very good at getting vitamins and minerals out of the soil, but plant roots are not. So the mushroom takes some of the sugar made by the tree and in return it gives the tree vitamins and minerals and everybody lives a happy life eating a balanced diet. They did an experiment taking the fungi away from some pine saplings, and they got very sickly! Mycorrhizal mushrooms will be mostly found growing out of the ground, although they have been known to have their mycelium grow up and around a log and then grow the mushroom right out of the log, so you can be fooled.

Other mushrooms are saprophytic, meaning they eat and decay dead plant matter like tree trunks, branches, needles and leaves. So not only are mushrooms necessary for the health of trees but if it weren’t for mushrooms, fallen plant debris would not rot. Every forest would have duff so deep you wouldn’t be able to walk through it because you would sink in over your head. Some mushrooms eat the cellulose in the plants (the white squishy part) leaving the brittle brown lignin behind. These are called brown rot fungi. More difficult to do is to digest the lignin and mushrooms are some of the only organisms to evolve enzymes to be able to digest lignin (you cannot – it’s one of many reasons that wood is not considered food). These leave the white squishy cellulose behind, and are called white rot fungi. Many logs will have many different mushrooms living in them, some eating the cellulose and some eating the lignin. Sometimes you can find a piece of a rotted log that is mostly white and squishy or brown and brittle and you can see which type of fungus predominates. One study of a single log in the forest that has been going on for over 20 years has found over 200 mushrooms growing out of it so far… that’s how many different species are living there. But most astonishingly, new ones are still being discovered every year. Saprophytic mushrooms often grow right out of the piece of wood that they are eating, and can be recognized that way, but some saprophytic mushrooms just live off of the nutrients in the soil and grow up in the grass, miles away from the nearest shrub or tree. However, if there are trees nearby, there is no way to tell for sure if your mushroom sprouting out of the ground is a saprophytic or mycorrhizal mushroom.

Saprophytic mushrooms can be mass produced easily and cheaply. They grow on piles of dead things, so if get yourself a pile of dead things and sprinkle spores on it you’ll grow mushrooms. But mycorrhizal mushrooms? They need to be attached to living, sometimes old growth trees, so you can’t grow them in captivity! They have to be hunted in the wild, and that’s why they are so expensive. The health food store is not trying to rip you off because they know you love morels so much more than you love the button mushroom…. it’s because the button mushroom is saprophytic and the morel is mycorrhizal. (Well, mostly, except for the one that popped up mysteriously in your planter that one time, but that’s another story.) Every morel that you see in the store had to be found by somebody walking through the forest. And truffles grow underground, so they’re even harder to find, so the price is going to be that much higher.

    More on Spore Prints

The spores don’t just fall off of the mushroom, they are forcibly ejected! The mushroom wants its spores to be flung as far away as possible to spread its “seed”, so it actually launches the spores, something which will only happen when the spores are mature and ready (and their proper colour) and if the mushroom is moist enough. If your attempt to make a spore print doesn’t work it’s not that you did it wrong. It’s that the mushroom is too young (so the spores weren’t ready) or the mushroom was too old (and too dry).

Occasionally mushrooms like some Agaricus have an intermediate spore colour – the spores go from clear to pink to dark chocolate as they age. Looking at a mushroom can fool you as to the spore colour. You have to take a spore print! You might see white gills because there are no coloured spores there yet (but if you left the mushroom in the ground and watched it for a day the gills would later turn brown with spores). You might see pink gills on an Agaricus but the spores have not fully matured yet into the proper dark chocolate colour. But you can’t be fooled by a spore print. Those fake pink spores (or any young spore not fully grown and not the proper colour) will NOT fall off onto the paper! So if it is ejected onto the paper, you have a “real” spore colour. It is also most reliable to measure spores under a microscope from a spore print, not from examining a piece of tissue (especially true of Ascos) because you won’t have any small young spores confusing you and giving the wrong measurements! Squishing a piece of tissue onto a slide may actually break off spores that are not yet their full size and colour and were not yet separated from the mushroom until you came along and crushed it.

    Taxonomy

As you saw in the instructions, if two mushrooms are in the same genus it’s because they are very closely related. If they are in different genera, but they are in the same family, they are somewhat related. If they are in different classes, you know that they are only distantly related. And if they are in different phyla, you know they are just about as different as any two mushrooms can be. But, as I said, there are only 6 levels of fungi in this classification system. For instance, Hygrocybe and Hygrophorus and Chrysomphalina are all genera in the Hygrophoraceae family. Hygrocybe and Hygrophorus are more closely related to each other (I think), but there’s no way for you to know that. You would need to add a new level, a sub-family (or a super-genus, not to be confused with Wile E. Coyote Super-Genius) to the tree to show that relationship. People have created many different sub-levels to show more detail, but it’s never going to be perfect until you have an infinite number of levels, which just isn’t practical. So this system, like any man-made system, is just a flawed attempt to show at least some of the relationships between mushrooms. You need a picture of a full phylogenetic tree to show the exact relationships between all the mushrooms, but we won’t get into that here.

Another interesting philosophical argument is: What is a species? OK, so you go through the keys and you find the mushroom you have, and you are able to put a name on it. Is that the mushroom species that you have? Maybe not. The field of mycology started out in Europe, where people went around and named all of the mushrooms they found. Then later, in North America, people started going around looking at all the mushrooms here, first of all along the east coast. They noticed that some mushrooms looked the same as the ones in Europe and some were different, so they used the European names for the ones that looked the same over here and made up new names for the new ones. Then they started looking on the west coast and they noticed that some were the same as in Europe, some were the same as on the east coast and some were new.  Except that is not necessarily true. The Amanita muscaria out west sure looks like the same one found in Europe for thousands of years, but a closer analysis shows that it just might be genetically different enough to perhaps be a different species. Some mycologists want to call it “Amanita amerimuscaria”. Once a mushroom migrates over here and gets isolated from its original population it will start to evolve and drift from the original European mushroom. Eventually there is enough difference that it becomes a new species. And there may be a lot of changes, but to the human eye it still looks the same, so sometimes you can’t actually tell which species you have without doing DNA analysis. But that’s not the final word either. No two mushrooms are alike, and no two people are alike. How far apart do two mushrooms have to be before they are considered a different species?  Believe it or not, there is no generally accepted answer to that question. Some people think that if two organisms can mate with each other and produce viable offspring (that themselves are capable of reproducing) then they are the same species, and if they can’t, then they are not. That is called a “biological species”. However, sometimes it is not possible to test this. Some people say “if the DNA is more than 1% different, let’s call it a different species” but that is arbitrary. Some people say “if we find a whole bunch of mushrooms very much like each other and a second bunch of mushrooms all like each other, but we can’t find any mushrooms that are in between, let’s call them two different species.” But then what happens when you later find a mushroom that’s right in between? You have to change your mind and say “I guess they weren’t separate species after all”. This has happened.

So the current state of affairs is that the DNA work is starting to be done to see if the thousands of mushrooms named in Europe are really the same thing over here. Somebody is going to make a judgment call (there are no right or wrong answers) and if the mushroom is “different enough” they will give the North American mushroom a different name and say that it is a different mushroom, even though to humans, they look the same. For instance, Helvella lacunosa, the fluted elfin saddle just got a new name here in the PNW – Helvella vespertina. It looks the same in Europe as it does here (although some people argue there are tiny differences) but if you find it in Europe you are supposed to call it “Helvella lacunosa” and if you find it in Seattle you are supposed to call it “Helvella vespertina”. Its DNA is different over here. Different enough that somebody thought it deserved a different name. Perhaps the only objective way to answer these questions is to choose the definition of “biological species”, but it takes a long time to do those studies, much longer than it takes to sequence some DNA, so that work is not going to be done anytime soon. Nor can everybody agree that that is how it should be done.

To make things official, every mushroom is supposed to have a “type”, the first mushroom found like it, which you are supposed to keep in a museum. You can say with absolute certainty that the first Helvella lacunosa found in 1783 in Europe is properly called Helvella lacunosa. But what about the millions of other mushrooms just like it that have been found since? Are they also Helvella lacunosa? Now you understand that some people would say yes and some people would say no. The problem is, we didn’t save the original specimens until recently, so there is no original “type” for Helvella lacunosa and many other common mushrooms first named long ago (we didn’t start saving them until more recently, and even if we did save them they’re so old now that you can’t always extract DNA). So you will never be able to prove it one way or another. For all such mushrooms somebody has to go back to the general area where the original one was found, find something as close to it as they possibly can, and declare that one the new “type” (and then remember to save it this time.)

Over the years, as we try and figure out which mushrooms are related to each other, we’ve gotten better and better at figuring that out and we have changed the names of the mushrooms many times to try and express that. Most mushrooms have many synonyms, alternative Latin names you could use for the mushroom, and not everybody agrees on which name is the right one. Some have dozens of possible names! So you will see the same mushroom on these pages called something different by a different book or a different person. The right name will continue to be argued over until we can say with certainty which other mushrooms it is related to and also say with certainty who named it first and therefore has priority.

Many of the guidebooks you will find, such as Mushrooms Demystified, were written a long time ago and DNA studies have shown that mushrooms are not related to each other in the ways we used to think. If David were to rewrite that book now, the chapters would be organized differently (and he just might.) The reason a couple of the chapters are so big is that only the most distinctive mushrooms got their own family (or chapter) back in the day, and everything left over was placed in a miscellaneous family (sometimes called the garbage family). It took years of microscopic and molecular study to figure out the differences between these leftover mushrooms and to create families where each mushroom can rightfully belong. And this work is still ongoing! It will be years before we have the answers. Mushrooms are being renamed and moved around the tree of life every month! We live in interesting times, for it may be true that sooner than we think these questions will be answered once and for all and so we can dream that one day our children will not have to live in a world where mushroom names are being changed all the time.

Now I bet there is one question going through many people’s minds right now… “Who cares?!?”.  As humans we love to categorize things, but the level of detail we choose to categorize things to should depend on whether or not declaring two mushrooms the same or different is actually useful somehow. Perhaps it is your job to trace how mushrooms have evolved and study how long it takes an organism to develop significant differences after being introduced to an isolated island. Then you absolutely want to try and figure all of this out. Is one species going extinct but a closely related species thriving and you are trying to figure out what changes are happening in the environment and how it might affect us? Then you also care. But if you just want to learn to recognize and enjoy the beautiful mushrooms around you, maybe you are completely content knowing that you have narrowed the identity of one down to a closely related group of species. What if you just want to eat it? You usually won’t care, but it turns out that the popular edible mushroom Macrolepiota rachodes turned out to be three different species, and the popular honey mushroom Armillaria mellea turned out to be nine different species all hiding in a species complex that looked almost identical. They differ by very little, except that some people are allergic to some of them (and get sick eating them) but not others. Now that somebody did the work of sorting out the minute differences that make up the different species (work which to some I’m sure seemed pointless), these people can figure out reliably which ones they can eat!

    Convergent Evolution

One very interesting thing we learned as we started to delve into the true relationships of the mushrooms is that there were some big surprises of mushrooms that looked alike but turned out to be completely unrelated as well as mushrooms that couldn’t look more different that turned out to be closely related. For instance, many puffballs and the little bird’s nest fungi turned out to be related to the store bought Agaricus mushroom. Yet Russula and Lactarius, although looking for all the world like every other gilled mushroom, are not closely related to any other gilled mushroom at all. It turns out that there are only so many ways you can look to be successful in life (if you’re a mushroom). You need to maximize the surface area to volume ratio of your spore-bearing hymenium, which simply means that you need to make as many spores as possible if you hope to reproduce.  While more “primitive” mushrooms only make spores on the surface of a piece of wood, eventually more “clever” mushrooms evolved to produce a wrinkled surface instead of a flat surface, in order to have more room to make more spores in and around each of the folds. Eventually, gills evolved, where the face of each gill is coated in spores, much like the pages of a book, producing thousands of times more spores than simply coating a flat surface would. Another strategy is to grow pores, like the boletes and polypores do. They evolved tubes (like a bundle of straws you hold in your hand) where the inside of each tube is coated with millions of spores. A third strategy is to develop spines (also called teeth), kind of like inside-out pores where the surface of each spine can be coated in many, many spores. These three shapes are the most successful for reproducing and they have evolved independently over and over again, seemingly by coincidence, so that we now have mushrooms that look identical but are millions of years apart in evolution. Except now we understand that it isn’t really coincidence – when you get into a harsh environment and are pressured to evolve more spores or go extinct, you find a way to evolve into one of those three shapes. This is called convergent evolution.

The shapes of Gastroid and Truffle-like fungi especially have evolved independently many, many times, as explained on the truffle page.

So that begs the question, what is a gilled mushroom? The answer used to be easy – anything with gills. But as we started to make up the mushroom family tree to accurately represent their relationships to each other we now have mushrooms with gills all over the tree and there is no longer just one branch of the tree with gills.  You might choose to define a gilled mushroom as everything related to the store button mushroom Agaricus (technically the Order Agaricales) which was the first mushroom ever named and therefore gets to be the official gilled mushroom. But this means that some mushrooms with gills (like some polypores and Russulas) are not gilled mushrooms, but puffballs and bird’s nests are gilled mushrooms. You can see why this might be controversial.

    Edibility

Edibility is another controversial subject. Mushrooms are very hard to identify and at first, you are not going to get the identity of most mushrooms correct when you use these pages (or any other book or key). And if you eat the mushroom, you might kill yourself. Identifying correctly is very hard to do and can only be done after getting a lot of hands-on experience with a trained teacher. There are many things that can go wrong

  • There are over 5,000 mushrooms in the PNW and most books only list a few hundred, so your mushroom is probably not even in your book.
  • Different mushrooms can look almost identical and it takes a trained eye to spot the differences.
  • Identifying is hard enough in person – via a photograph it’s even harder still.
  • Every key and book I know has mistakes in it, including this one, sometimes giving you the wrong information and sometimes having the wrong photograph for a certain species.
  • I am always finding mushrooms that grew under odd circumstances and look nothing like they normally do, often looking much like a different mushroom.
  • Mushrooms change a lot as they age, and a photograph can only show one at one point in its life cycle.
  • Where you live, there may be deadly poisonous mushrooms that don’t grow elsewhere and look like edible mushrooms where your guidebook was written, so the guidebook might not warn you about them.
  • Many people are allergic to mushrooms and get sick eating things that others can eat perfectly well. So always try only a small piece of a new confirmed edible species and only eat more of it if you don’t feel sick after an hour or so.

I’m not trying to discourage you from learning. With enough practice you can learn to identify hundreds of different mushrooms from blurry photographs, but it takes years. Go ahead and try and identify all the mushrooms you find, and use the result as the starting point for learning more about that species and how to identify it, but just in case you’re wrong, don’t eat it.

There are a lot of common “rules” floating about that say things like “Do not eat a bolete that turns blue wherever it is touched”, or “poisonous mushrooms are white or have red pores” but none of these rules are true. A rule like this comes about because somebody discovers a poisonous mushroom that turns blue, or is white, or has red pores, so they make a rule saying not to eat mushrooms that have that property. But the truth is, there are probably 99 edible mushrooms that are white or turn blue for every one that is poisonous, so it’s not a very good rule. You might think that at least it’s a good “better safe than sorry” rule, except that there are deadly poisonous mushrooms that don’t look like any of the mushrooms in any of the rules, so you can needlessly avoid hundreds of good edible species and only eat a mushroom that doesn’t follow any of the “bad” rules, and you might still die. So much for rules.

OK, this is the moment you’ve all been waiting for. I am about to tell you the real way to tell if a mushroom is edible or not… are you ready? Here goes… you eat it and then see what happens to you.

Yes, here we are well into the 21st century, and there is still no better way. There may be hundreds of different toxins in different mushrooms, and we don’t even know what they are, so we can’t make a test for them. Sure, whenever a mushroom kills somebody it gets funding, and we learn why. So there is a test for amatoxin, the deadly poison in Amanita phalloides and other mushrooms, but for the vast majority of poisons out there there is no test. So every time you read in a guidebook “edible, edible, poisonous, edible” it’s because some brave person long ago ate them and passed them around to a few of their equally brave (or naively trusting) friends, and wrote down which ones made them sick, and how sick they got. Then, as mushrooms started killing people, we found fewer brave volunteers to try all the unknown and newly discovered mushrooms, which is why in more recent guidebooks describing more recently discovered mushrooms, you’ll see a whole lot of “unknown, don’t know, unknown, no idea”.

I think it is true to say that there are far fewer poisonous mushrooms than we think. If anybody got scared or felt weird when eating a mushroom, nobody else would be brave enough to try it, so a lot of the mushrooms received bad reputations for no good reason. Many “poisonings” were allergic reactions that you or I might not have if we ate it. And if the first person ate it and was fine but the second person ate it and got sick, we wrote “edible, but use caution as some people can’t tolerate it”. But if the first person got sick and the second person was fine we wrote “poisonous but not to everybody”. Same edibility. But it is still true that some mushrooms can kill you, so no matter how few of them are actually poisonous, don’t eat something you can’t ID with 100% accuracy, because you might get unlucky.

Don’t trust what somebody else says unless you personally know their credentials. All the time I see people on the internet post pictures and ask what a mushroom is, and I see other people respond naming it as a species that is edible, and they are wrong. Sometimes they even admit they’re only guessing because they’re only trying to learn themselves and hoping that somebody will tell them if they are right or wrong. They don’t expect the other person to eat it based on their guess. But some people seem to trust a stranger on the internet whom they have never met with their life, and they will eat it. Remember, that is what you are doing, trusting that person whom you’ve never met with your life.

If you hang around with an identifier long enough you’ll notice that they are always finding strange mushrooms in the woods and saying “Hmm, I wonder what that is?” and popping them in their mouth. What is going on? Are they trying to kill themselves? Well, some mushrooms that look alike only differ by taste, so you have to taste them to find out what mushroom you have. As long as you spit them out, barring bacteria and environmental toxins, you’re probably OK. The poisons are long chain proteins usually too large to be absorbed through the mucous membrane of the roof of your mouth – you would have to actually swallow a piece to get poisoned. You might not want to go around chewing the deadly Amanita just on principle. Mycologists have a pretty good idea that their mushroom is not deadly poisonous before they risk a taste, but my point is that you should not be afraid to touch a mushroom. And there is certainly no reason to avert your children’s eyes away from the forest for fear that they see a poison mushroom and it hurt them.

So in summary, if you would like to start eating wild mushrooms, my advice to you is to find an expert who can teach you, in person, just a few of your favourite edibles and their poisonous lookalikes, and then practice with that person until they are confident that you can do it on your own. Since there are no general rules to identify edible mushrooms, you will have to start with a small number of species, non-gilled if you want to be safest (since they are easier to identify and fewer of them are poisonous), and learn all the lookalikes from a real person. Don’t try to do it from any book or publication.

Microscopy

If you are just starting out, you are probably not yet thinking of getting a microscope to look at mushrooms for identification, but eventually you will need to. A macroscopic key can only get you so far. You might notice a number of species are described very similarly on these pages, and are wondering how you can learn to tell them apart. The answer is that you probably can’t without a microscope and more information on what to look for. Subtle differences are not usually reliable, so trying to learn to identify lookalike species by studying their tiny differences is misguided – it really might be either one.

Here is some advice on how to get started with a microscope, when you’re ready. Books will tell you many, many things you can look for under the scope to identify your mushroom, but they won’t tell you how difficult they are to find. You can see most everything you need to see with a good 400 power system. Don’t feel you need to spend the extra money right away for a 1000 power oil lens. You can see the shape and size of spores and measure them to within a micron or two. Don’t expect at first to be able to tell the difference between species whose spore sizes differ by less than that. Most of the time, you will see if the spores are smooth or have some kind of warts, but not always. Telling Basidiomycota from Ascomycota is very easy to do. So is finding odd shaped cystidia.

However, if you are told to look for clamp connections or tell the difference between monomitic and dimitic or trimitic hyphae, do not expect to be able to do that without a very good quality 1000 power lens and a whole lot of practice and patience. The same goes for trying to find the structure of the cap and gills. If you know what you can realistically find as a beginner, you will save yourself from getting frustrated and impatient.

    Mycology

I’d love to be able to answer all of your questions, but the unfortunate fact is that there is so much about mushrooms that we just don’t know. Mycology does not get a lot of funding, and there are not a lot of people working in the field compared to botany, mammalogy and, well, just about every other part of biology except for slime molds. (Even mycologists feel sorry for slime molds in the Kingdom Protista and sometimes study them out of pity). There is just so much we don’t know and are not likely to learn anytime soon, which is unfortunate considering that everything we do know is telling us how crucial fungi are to every part of the life cycle on this planet. The mystery is one reason we find them so fascinating and amateur enthusiasts from mushroom clubs are often able to help professional mycologists in many ways. Not only are they fun to study, but it’s great to know that what you do can make a difference! The field needs all of the assistance it can get.

Don’t feel bad if you have trouble matching a mushroom you find to the pictures on these pages. Individual mushrooms of a species can vary tremendously. Imagine you are an alien that has come to Earth and you say “take me to your leader” so they bring you to President Obama. Now you’re wondering which species he is, so you consult your guidebook to creatures of the Milky Way galaxy, and the picture they have under “human” is a photo of Prince William’s new baby. You would go back to your home planet and swear up and down that you couldn’t possibly have spoken to a human. Read and become familiar with as many references as you can, and make sure to note the variety each individual can demonstrate every time you find a mushroom, and don’t give up.

Too many people hear nematode and instantly want to kill them off. (At least those who even know what a nematode is in the gardening world.) I got into a discussion with another woman and she told me if I didn’t treat my soil with nematode deterrent my vegetables would be stunted and I would get roundworm. Better safe than sorry was her ending logic. A little information is scary sometimes – especially when we don’t seek further clarification on what we just learned.

Nematodes are awesome especially the good guy ones!   They are an intrical part of the soil food web and making nutrients soluble for the plant uptake.    They are amazing creatures under the microscope.  I always get excited when I see one. 

From an agricultural perspective, there’s really two forms of nematode which are important to be aware of: predatory or parasitic.
Predatory nematodes are types which seek out and attack an assortment of other garden pests like cutworms or squash vine borers. I often refer to these as beneficial nematodes or the “good guys”, as they help keep our gardens pest-free. These are great to have around!
Parasitic nematodes, on the other hand, are not so great. Often invisible to the naked eye, these will attack living plant matter and consume it. They can cause the plant to focus its attention on healing that damage rather than healthy growth.
Root knot nematodes, the Meloidogyne species, fall into the parasitic category. They can cause our plants to inexplicably yellow, develop stunted growth, or look weak. Their chewing on the root systems of plants can allow other plant diseases to take hold as well

And then, there are the good guys.   “Fungi and nematodes are among the most abundant organisms in soil habitats. They provide essential ecosystem services and play crucial roles for maintaining the stability of food-webs and for facilitating nutrient cycling. As two of the very abundant groups of organisms, fungi and nematodes interact with each other in multiple ways…. read more

Fungi-nematode-interaction

 

 

Soil Microbiology: A Primer

by Vern Grubinger
Vegetable and Berry Specialist
University of Vermont Extension

 

Although it may not be obvious, healthy soils are chock-full of living organisms. Some are visible to the naked eye, like earthworms, beetles, mites and springtails, but the majority of soil-dwellers are very, very small. They’re also very, very important to soil fertility.

Just a few grams of soil, less than a teaspoonful, may contain hundreds of millions to billions of microbes. Not only is the total number of microorganisms in fertile soil quite high, but together, they weigh a lot, too. Soil microbial biomass can range from several hundred to thousands of pounds per acre.

By far, the most numerous microbes in soil are bacteria, which have just one cell. Also abundant are fungi, which produce long, slender strings of cells called filaments, or hyphae. The actinomycetes are in-between these two organisms. They are advanced bacteria that can form branches like fungi. It’s the actinomycetes that give soil its characteristic earthy smell. Fungi and actinomycetes are good at starting the decomposition of organic residues, working on materials that are tough to break down. Bacteria finish the job by eating the more digestible ingredients.

Many other microbes can be found in smaller numbers in soil, including algae, cyanobacteria (often called blue-green algae), and protozoa (one-celled organisms that decompose organic materials and also consume bacteria). Nematodes are microscopic roundworms; some of these are beneficial and some are plant parasites.

The soil zone located immediately around active roots is called the rhizosphere. This is an area of high microbial activity. Materials released from roots, called exudates, create a food-rich environment for the growth of microorganisms. Rhizosphere microorganisms in turn help plants by fixing nitrogen from the soil air, dissolving soil minerals and decomposing organic matter, all of which allow roots to obtain essential nutrients.

Some microbes have a specialized role in the rhizosphere. Rhizobia bacteria associate with the roots of legumes to form nodules. This symbiotic relationship provides the bacteria with a source of carbon in exchange for making nitrogen available to the plant. Farmers are familiar with this process, and often encourage it by inoculating legume seeds with a commercial preparation of the Rhizobium species that is suited to the crop species they are planting.

A special kind of fungus called mycorrhizae also associates with plants. By colonizing large areas of roots and reaching out into the soil, mycorrhizae aid in transfer of soil nutrients and water into the plant. This is especially important in situations where nutrient availability or moisture is limited.

Microbes have a lot to do with maintaining good soil structure, which promotes infiltration and drainage of water, soil aeration, and vigorous root growth and exploration. Gummy substances produced by soil microbes (complex sugars and mucilages) help cement soil particles together into aggregates, which contribute to soil structure. This cement also makes aggregates less likely to crumble when exposed to water. Fungal hyphae further stabilize soil structure as their threadlike structures spread through the soil, surrounding particles and aggregates like a hairnet.

The proportion of the different kinds of organisms present in your soil depends on conditions such as available moisture, aeration, organic matter levels and the type of plants present. Chemical conditions such as acidity and alkalinity will greatly affect soil organism populations. For example, fungi often prefer acidic soils, while actinomycetes thrive in more alkaline conditions.

In order to encourage microbial activity on the farm, soil has to be managed to create a favorable environment for both crops and microbes. This can be done by timely and appropriate tillage that avoids compaction; irrigation and drainage practices that keep the soil moist but not waterlogged, liming to maintain a near-neutral pH, and frequent  addition of organic (carbon-containing) residues to provide energy for the microbes.

In general, the abundance of microbes in soil is proportional to the organic matter content. Soils that have large amounts of organic residues regularly added to them tend to support a larger microbial population. However, there is usually an explosion in microbial numbers after the addition of available carbon ‘fuel’, followed by a population crash as that fuel is consumed. Some of the fuel is incorporated into microbial cells and some is given off as carbon dioxide. Later, the microbial cells become food for other microbes and then they, too, are decomposed through microbial activities. So eventually, microbial activity returns to a low level unless more residues are added. The good news is that the microbes are always there, ready to leap into service when environmental conditions are suitable and there’s a source of energy.

For more information on soil microbes, soil management and soil fertility, refer to “Building Soils for Better Crops,” by Fred Magdoff and Harold van Es, available from the Sustainable Agriculture Research and Education (SARE) Program at: www.sare.org/Learning-Center/Books/Building-Soils-for-Better-Crops-3rd-Edition.

This word describes a process by which living things break down carbohydrates to make other molecules and provide energy to cells or organs. Carbohydrates are common compounds in food and include sugars and starches Some microbes use fermentation to get energy from carbohydrates. When people put those microbes to work, this process helps make both food and fuels.

Fermentation makes acids, alcohols, gases and other chemicals. A microbe called yeast, for example, ferments the sugars in bread dough. This makes the gas carbon dioxide. Bubbles of that gas make a loaf of bread rise and become light and fluffy. Yeast also make the alcohol in wine and beer.

People can use fermentation to make alcohol for fuels. For instance, bacteria and yeast can break down sugars and starches from plants, such as corn. That fuel can be added to gasoline to help power cars.

The microbes in animal guts, including in our own guts, ferment. When cows digest grass, some of their gut microbes make methane gas. That gas escapes when they belch or fart. That might sound funny, but methane is a greenhouse gas. It traps heat and contributes to global warming.

Fermentation isn’t just for microbes. Our muscles can also ferment. Animal muscles usually get energy from a process that uses oxygen. When they can’t get enough oxygen, they use fermentation. That’s because fermentation doesn’t require oxygen.

STEP ONE

In a big bucket with 3lb raspberries (you can choose your own fruit, almost any will do),  Pour on 5pts of water and added a teaspoonful of pectin enzyme to prevent ‘pectin haze’. Then mash berries with a wooden spoon and covered the liquid with a tea towel (very important esp. in summer to keep insects out).

This is left for two days.

STEP TWO 2 DAYS LATER

Add to the bucket between 1kg and 11/4 kg of sugar (preferably fair trade/organic, white) dissolved in 2 pts water off the boil. Add 1 tsp dried yeast with a little sugar all dissolved in some of the fruit liquid in the bucket.

It’s the yeast that turns the sugar into alcohol and the more sugar the sweeter the wine. Nick uses less (1kg) as he likes a drier wine.

This liquid is then stirred 2-3 times a day over the next four days, and the process is called ‘fermenting on the must’.

STEP THREE 4 DAYS LATER

This is the messy bit, where you strain all the liquid through a muslin sieve, before funnelling it into the demi-johns and putting an airlock on it. This is then left to ferment for between 3 and 18 months until there are no longer any bubbles to be seen in the airlock. During the fermenting process a stable temperature is important. Nick doesn’t worry too much about whether it’s warm or cool, just that there is as little fluctuation as possible.

STEP FOUR 3-18 MONTHS later
Decant into bottles and leave for 1-2 years depending on the fruit. Raspberries need less time than elderberries, for example.

Now invite everyone to taste some of the wine made  – for medicinal purposes only, of course. 

Microbes sustain life on earth and they have relationships we are just beginning to understand leading us to discover these smallest of small critters and animals are the basis of all life.

The floriculture of microbes is called the soil microbiome and it is very similar to our humanbiome and definitely intricately connected.    Unseen (with our eyes) microbes have a collective mass greater than all the animals on the planet.   In the human, there are more microbes then human cells.   

We are here because of the microbes and we live in their world!

Microbes (also called microorganisms) are literally everywhere.  They  grow and reproduce in and on your body, and on rocks, within plant roots and on their leaves, in wetlands, oceans and fresh waterways.   And, microbes are in soil.  There are more microbes in a teaspoon of soil than there are people on the earth. There are more microbes in your gut than human cells in your body.   Soils contain about 8 to 15 tons of bacteria, fungi, protozoa, nematodes, earthworms, and arthropods.

Therein likes the difference to soil and dirt.  There is a big difference.   The Father of Soil Science, Hans Jenny, defined the 3 components of soil.  The first is mineral (texture) which is the sand, silt and clay.    Organisms are the second component.  And, the third is the organic matter (OM).    Without the microbes or the OM, it is simply dirt and void of life. 

In the soil, the microbes decompose and recycle; keep us healthy, make the oxygen we breathe, fix nitrogen, control pollution, are a source of renewable fuel.  They literally feed the world!  Without them, there is no food!  And, without these microbes healthy we may have a plant we can eat force with “ides” and “izers” but it contains no nutrients.   It is like the difference between a tablet of processes vitamin C and a sprig of parsley from good soils.

It is a web of precious live science has neglected for too long Soil microbes throught recycling and decompossition release chemicals (such as carbon, nitrogen, and phosphorus) that can be used to build new healthy plants (and animals). So, the flower or a vegetable will eventually become part of another living thing chemically.   So the next time you see cut flowers decay or a garden vegetable rot, remember, you’re really seeing microbes at work.

Our understandings about these microbes is now giving us solid information about how to provide the environment and the biology to ensure the good microbes thrive.  Science is now discovering the microbe world in research that  “…just like the human gut or plant roots, the hyphae of AM fungi have their own unique microbiomes,”  Scientist at the Maria Harrison, Scientist at the Boyce Thompson Institute (BTI)  “https://www.eurekalert.org/pub_releases/2021-04/bti-fcm040221.php?fbclid=IwAR28ooKSVt8nVrEltXp0d0vz2Z6XSv-SpaBb2Bw7RaiMezc1UUBg1yMkDQM  

Everything has a symbiotic relationship.   For example, all living things require nitrogen for building DNA, RNA, and protein molecules. We knew nitrogen is abundant in the atmosphere but only a few species of microbes can use it in this form. All other organisms depend on certain bacteria that produces enzymes that convert or “fix” gaseous nitrogen (N2) into a form other organisms can use (such as ammonium (NH4+) or nitrate (NO3-)).  Nitrogen-fixing bacteria depend on plants for food therefore forming a symbiotic (or mutually beneficial) relationship. Animals (including us humans) in turn acquire nitrogen by eating plants and plant-eaters.   

Other metabolically talented microbes can metabolize metals, acids, salt, methane, or even radioactive wastes. We are discovering a microbe for every pollutant. Thus microbes can treat sewage, clean abandoned mines, and degrade a variety of industrial chemicals.    

We are just beginning to understand and appreciate this minute world at greater depths.   Maybe it is just in time because we have spent years destroying them and following practices (both chemical and organic) that have harmed their cycle of life.  Soil biology is the mediator of life on Earth. It is the function of the biological systems acting as the “gut” of plants.

When we look into the soil with our microscopes we want to see bacteria, fungi, yeasts, protozoa and nematodes.  They act as microbes in the gut biome to solubilize, sequester and digest the minerals from the sand, silt, clay, rocks, pebbles and crop residues into plant available nutrition.    This nutrition translates for us humans as amazing “taste” that is satisfying. This is referred to as nutrient cycling and in symbiosis with plants, they (the microbes) are critical for carbon cycling also.

We all, farmers and gardeners alike, are realizing this the soil biological system that literally is the “gut” of our environment.    Big money AG and the wrath of herbicides, insecticides, fungicides, soluble fertilizers and tillage have left soils void of some of these microscopic soil managers. They are out of balance. Without them, we are left to chemistry that may superficially be a short fix but it is harming the critters.   As our understanding of many of the “-cides” used in agriculture increased, it is clear how devastating these can be to the microbes. We need to eliminate or at the very least, use wisely, all forms of insecticides and fungicides so as to not compromise the biodiversity.   We need to rebuild the biodiversity.

One of the fundamental theories from soil consultants is that not all soil testing is created equal. Simplistic N-P-K and pH tests are fine for determining fertility needs, but worthless when it comes to rebuilding soils.  To rebuild you have to understand the microbiology.

It is important that we remember to view soil as a habitat and an ecosystem, and to shift our mindset from feeding plants to feeding the soil, which will in turn feed the plants and support them in many other ways.   Microorganisms are “everything” and is relevant to everybody.   The proof is around us everywhere.  Microbes actually do everything.  

Soil microbes are the simpliest of creatures that created our environment we live in.   In our soil microscope and compost making we are particularly interested in bacteria, fungi, protozoa, nematodes and soil microaggregates (held together by the microorganism glue). 

There are microbes in us, on us and acting upon everything around us.     If we don’t understand them and stop harming them, there will be no nutrition from our plants and we will left with only “dirt”, barren land, anaerobic conditions and life will cease.  We have to look at this differently.   We have help the microbes thrive.   We all need to eat and we all need healthy nutrition.  Microbes are responsible for creating soils we all desperately need.  

Recently, so many insights into how life happens becauses of microbiology.   The microbes are the engines of production and understanding their role and helping them flourish translates to true sustainability longterm.   As we learn more and more we realize they offer roots to all the solutions we are seeking…at least the most fundamental issue we are face with collectively and that is “health”.   It is important now and even more important in the future.  Taking care of the soil is taking care of the whole!

Analysis of Candida Albicans as a Fungus
[Taken from writings of Dr. Simoncini but reduced to less medical and more commonly understood words.]

Candida Albicans is a type of fungus.

Fungi possess a property that is strange when compared to all other micro-organisms: the ability to have a basic microscopic structure (the fiber-like hypha) with a simultaneous tendency to grow to remarkable dimensions (up to several kilograms), keeping unchanged the capacity to adapt and reproduce.

From this point of view, therefore, fungi cannot be considered true organisms, but unique cellular parts with the behavior of an organism.

Fungi, during their life cycle, depend on other living beings, which must be exploited in different degrees for their feeding. The simple carbohydrates (sugars) needed by fungi include monosaccarides (glucose, fructose, and mannose). The fungi get these sugars from their hosts by feeding on their oragnic waste, and by directly attacking the host for nourishment.

Fungi show a great variety of reproductive manifestations (sexual, asexual, gemmation; these manifestations can often be observed simultaneously) in order to create spores.

The hyphas somewhat beak-shaped fiber structures allow their penetration of the host tissues.

The production of spores can be so abundant as to always include tens, hundreds, and even thousands of millions of them.

Spores have an immense resistance to external aggression, for they are capable of staying dormant in adverse conditions for many years, while maintaining their regenerative potential.

The shape of the fungus is never defined, for it is imposed by the environment in which the fungus develops.

The partial or total substitution of nourishing substances causes frequent mutations in fungi, and this is further proof of their high adaptability.

When the nutritional conditions are precarious many fungi join with nearby fungi which allows them to explore the available tissue more easily, using more complete physiological processes. This property, which substitutes co-operation for competition, makes them distinct from any other microorganism, and for this reason Buller calls them social organisms.

When a fungus cell gets old or becomes damaged (i.e. by a toxic substance or by a drug) many fungi, whose intercellular dividing walls are provided with a pore, react by transfering the nucleus and cytoplasm of the damaged cell into a healthy one, thus conserving unaltered all their biological potential.

The phenomena regulating the development of hyphas is independent of the regulating action and behaviour of the rest of the colony.

Fungi are capable of implementing an infinite number of modifications to their own metabolism in order to overcome the defense mechanism of the host. These modifications are implemented through plasmatic and biochemical actions as well as by a size increase and reproduction of the cells that have been attacked.

Fungi are so aggressive as to attack not only plants, animal tissue, food supplies and other fungi, but even protozoa, amoebas and nematodes.

Fungi hunt nematodes, for example, with peculiar hyphal modifications that constitute real mycelial fiber criss-cross, viscose, or ring traps that achieve the immobilization of the worms. In some cases, the aggressive power of fungi is so great as to allow it, with only a cellular ring made up of three units, to tighten in its grip, capture and kill its prey in a short time notwithstanding the prey’s desperate struggling.

From the short notations above, therefore, it seems fair to dedicate a greater attention to the world of fungi, especially considering the fact that biologists and microbiologists constantly highlight large deficiencies and voids in all their descriptions and interpretations of the fungi’s shape, physiology and reproduction.

The fungus is the most powerful and the most organized micro-organism known.

The greatest disease of mankind may therefore hide within the small cluster of pathogenic fungi, and may be after all be located with just some simple deductions able to close the circle and provide the solution.

Therefore an exceptionally high and diversified pathogenic potentiality exists in this fungal fiber of just a few microns in size, which, even though it cannot be traced with present experimental instruments, cannot be neglected from the clinical point of view. Certainly, its present disease classification cannot be satisfactory, because if we do not keep the possibly endless parasitic configurations in mind, that classification is too simplistic and constraining.

We therefore have to hypothesize that Candida, in the moment it is attacked by the immune system of the host or by a conventional antifungal treatment, does not react in the usual, predicted way, but defends itself by transforming itself into ever-smaller and non-differentiated elements that maintain their prolific reproductiveness intact to the point of hiding their presence both to the host organism and to possible diagnostic investigations.

The Candida’s behavior may be considered to be almost elastic:

When favourable conditions exist, it thrives on epithelium (a surface such as the inner surface of intestines); as soon as the tissue reaction is engaged, it massively transforms itself into a form that is less productive but impervious to attack — the spore.

Candida spores

If then continuous sub-surface anti-fungal solutions take place coupled with a greater reactivity, in that very moment the spores go deeper into the lower connective tissue in a well defended impervious state.

In this way, Candida is free to expand to maturation in the soil, air, water, vegetation, etc., that is, wherever there is no antibody reaction.

In the epithelium, instead, it takes a mixed form, that is reduced to the sole spore component when it penetrates in the lower epithelial levels, where it tends to expand again.

Candida has been studied only in a pathogenic context, that is, only in relation to the epithelial tissues. In reality Candida possesses an aggressive ability that is diversified in response to the target tissue. It is just in the connective or in the connective environment, in fact, and not in the differentiated tissues, that Candida may find conditions favourable to an unlimited expansion. This emerges if we stop and reflect for a moment on the main function of connective tissue, which is to convey and supply nourishing substances to the cells of the whole organism. This is to be considered as an environment external to the more differentiated cells such as nervous, muscular, etc. It is in this context, in fact, that the competition for food takes place. On one hand we have the organism’s cellular elements trying to defeat all forms of invasion; on the other hand, we have fungal cells trying to absorb ever-growing quantities of nourishing substances.

Candida goes deeper into the sub-epithelial levels from which it can be carried to the whole organism through the blood and lymph (intimate mycosis). Stages one and two are the most studied and known, while stage three, though it has been described in its morphological diversity, is reduced to a silent form of saprophytism (obtaining food by absorbing dissolved organic material).

This is not acceptable from a logical point of view, because no one can demonstrate the harmlessness of the fungal cells in the deepest parts of the organism. In fact, the assumption that Candida can behave in the same saprophytic manner that is observed on epitheliums when it has successfully penetrated the lower levels is at least risky.

In fact, we ask you to not accept the theory that the connective environment is (a) not suitable to nourish the Candida, but also at the same time to not accept (b) the belief in the omnipotence of the body’s defense system towards an organic structure that is invasive but that then supposedly becomes vulnerable once lodged in the deeper tissues.

As to point a), it is difficult to imagine that a micro-organism so able to adapt itself to any sub-strata cannot find elements to support itself in the human organic substance; by the same token, it seems risky to hypothesis that the human organism’s defense system is totally efficient at every moment of its existence.

Finally, the assumption that there is a tendency toward a state of vulnerability in the case of this pathogenic fungus — the most invasive and aggressive microorganism existing in nature — seems to carry a whiff of irresponsibility.

It is therefore urgent, on the basis of the above-mentioned considerations, to recognize the hazardous nature of such a pathogenic agent, which is capable of easily taking on a variety of biological configurations, both biochemical and structural, in response to the current environment of the host organism.

The fungal expansion in fact becomes greater as the host tissue becomes less nutritious to the candida, and thus less reactive against it.

Fider cider is one of those grandmother alchemies that sat on the kitchen counter and was administered (as a treat) to the children.  It is a prime example of the people’s medicine.  It is a modern cousin of Thieves Oil that reported wiped out and warded off the plaque.   It is a full medicine for the body’s systems.

Yes, it tastes great; hot, sour, pungent and sweet.  It is a warming tonic that soothes.   The natural way of our body is a most complex and magical functioning.    It knows what to do to keep us in homeostasis.  This blend is just to give it the fuel required.    It is not a medicine as much as it is a magical food.

The base is fermented for 8 weeks in my homebrew of Apple Cider Vinegar.  The characters include ginger, garlic, onion,  turmeric, horseradish, rosemary, thyme, oregano, cayenne, lemons and oranges, dandelion and burdock root.   All except the ginger and onions have been harvested from the land of the Purple Carrot Club.   

For special purpose, I added the essential oils and hydrosol of pine needle tips, coffee berries and star anise which was  made in my apothecary.     The fruit from coffee bean that has been fermented to release it’s antioxidant power and honey in its’ pure and unpasteurized state.  

This is a tonic to keep you healthy and hearty.   It is a protection and a rebuilder.  This blend considers the plagues affecting us today.

The participants benefits:

Apple Cider Vinegar — a digestive aid that fights bacteria and viruses.

Horseradish — helps alleviate sinus congestion and headaches and cleanses the colon

Ginger — helps with digestion, infections and nausea.

Garlic —has antimicrobial and antibacterial properties.   Allicin (the smell of garlic), helps regulate cell death.

Onion — has similar properties to garlic but is also great for preventing (or recovering from!) colds and the flu.

Lemon and Orange Peels – Vitamin C, immune system

Coffee Berry Essential Oil and Hydrosol – a powerful antioxidant and another source fo vitamin C

Cayenne Pepper — helps move blood through your cardiovascular system. Blood circulation = healing.

Raw Honey — soothes inflamed tissues, suppresses cough, anti-bacterial.

Pine Needles and Star Anise (I talk about this in this article in depth)

Dandelion and Burdock Root  Blood cleansers and fortifiers.  Friends of the liver  

 This tonic is great as a salad dressing, a marinade or added to other fermentations.  You can drink it plain, use it in cooking, or mix with water, seltzer, juice, or tea.   

This is a fun elixir to make with many of the products coming from the purple carrot land.   

Eight week Ferment of Garlic, Ginger, Turmeric, Horseradish, Onion, Lemon and Orange Peels, Thyme, Rosemary, Cayenne Pepper, Oregano blended with Pure Honey, Essential OIl and Hydrosol of Pine Needle Tips, Star Anise, Cherries of Coffee (berries), Tincture of Dandelion and Burdock Root 

A maintenance dose is 1 tsp with every big meal (2 x daily).   For increased immune response double or triple as you body suggests.   Shake well before use.   

Primary Link

 

 

 

I went on a mission to learn the best method for growing a beautiful lawn naturally. I took it back to the historical roots, learned the reasons we are obsessed with it and then saw grass from an ecological standpoint. Grass is an amazing and super beneficial edible and medicinal plant. If there is one plant we should know it’s how to care for grass. All grass can help us improve our soil as a source of nitrogen for compost with all the new growth rich in nutrient and it’s a source of Protozoa and fungi for many holistic soil management methods. Believe it or not the best way to get grass healthy is to make a tea using healthy grass.

All this works with many plants because to get a plant healthy naturally it has to have its support system. The parameters for growing a plant is the plant in many ways.

Like the concept of we need money to make money when we grow we need life to make life. I didn’t just use grass to make my yard grow this well but for those struggling to understand human engineered teas and extracts plant for plant teas can make a big difference. To make a plant to plant fertilizer we can put a plant in a blender, strain and dilute the juice in 5 gallons of fresh water and scoop, drizzle or spray it onto the same plant we blended. Some plants can affect others differently so if you use one plant to fertilize another and get it in the foliage do so with caution using trial and error hesitations. I don’t want to be responsible for someone using a toxic tropical plant on our natives thinking a healthy plant makes a healthy plant. This is only part of the message. D

ifferent plants have and need different microbes. Kale needs actinobacteria but put actinobacteria on tomatoes and you’ll have blight showing in a few days. I want to help but as with many things I’ve learned the standard ecological answer is, “it depends” so look for 2 sides to everything within the biosphere … “that’s life”, as they say.

The Garden map is the mission and vision of Living Ground

I acknowledge  the superiority and necessity of “Natural Systems” over the artificial stimulation methods employed by traditional plant care practitioners (both organic and chemical).

I strive to learn more about the soil microbiome, we see the connection to all life and especially human life.   We are a part of and not separate.  

believe that land suffers from a deficiency of “chemicals” or nutritive value. Thus, it is time to encourage movement away from chemical dependencies. 

I can enhance the beneficial natural soil biology that supports plant health.THe Microbiology Approach provides peace of mind for all growers while the landscapes are being cared for in a more environmentally sensitive manner.

I follow, to the best of my ability,  nature’s way

I create from the land.   I alchemized taste and texture from the plants and desire each product to be a sensation of happiness from soil to plant to kitchen alchemy.

Collecting Soil Samples is fun and easy.  A composite sample is made by combining several subsamples from the same area, mixing and then sending a portion to our lab.

The Short Form Instructions:

Gently dig around roots zone (2-5 inches) and take a core sample (little hand full). Do this 5 times
Empty those 5 cores into a clean bucket or bowl. Mix up the core samples.
Place 10 oz or 250 g (approximately 2 cups) of mixture in a plastic, zipper-bag. Leave some air space in the bag upon sealing.
Label your bag (name, date)
Complete the Soil Test Submission FormComplete the Soil Test Submission Form
Bring your sample(s) (or send in a taxi) to our lab within 2 days.

Register the sampling here .  We receive the form immediately when you press “submit”, so there is no need to print it.   Label your bag  and bring it to us.

Wait for the result!   You will receive an email as soon as we have received the samples along with an estimate of when you can expect the result (normally this is less than two days).

MORE DETAILED INFORMATION:

Soil tests can be no better than the sample. Therefore, proper collection of the soil sample is extremely important.  If there is more than one soil type or native plant community, we suggest doing a separate composite sample for each of them.   For large areas, consider having an onsite investigation and consultation

First, identify the area of interest to take the sample from.    This area should be uniform in nature and plant-type (similar).   Your sample will contain 5 different samples of the soil at the root system of the existing plants from a designated area.  This will be placed in a clean bucket and mixed throughly.   The sample (approximately 2 cups) is taken from the bucket and placed in a zip-locked bag.

The best sample cores are from the root zone of the desired plant.   You can carefully use spade to dig down around the root zone and using apple corer or potato peeler.  Be gentle!   We aim to keep the living creatures alive and not sliced and diced.

Due to our temperate climate and clays of Ecuador, we often have compaction areas (hard compacted soil).   Roots can not penetrate this compaction zone.   Make note of the depth of this compaction zone and record this in the submission form (in other comments)  as it will give us clues for recommendations.  If the root or compaction zone cannot be located, cores from 3‐4 inches down into the soil will work.   It is best to have some root sample material.  We also test for mycorrhizal colonization so it is best to include about 5 inches of roots.

Once you have your sample, fill out a soil test information sheet.   If you are testing different areas, please fill out a separate intake sheet for each sample.   Each sample should be given a different name.

Once all information is received the test takes approximately 2 working days to complete.   We will provide you with recommendations for optimal health of your soil.

Once you receive your report via email we are most happy about the analysis and help you understand the analysis.   Or, you can read “Understanding Your Soil Biology Report” .

We look forward to doing business with you and saving our land one soil particle at a time.  Let’s change the dirt and make soil!

Contact Living Ground Suelo Vivo

Facebook

Instagram

Email

whatsapp  0988771568

(no phone towers when we are at the land)

Stay Informed (New Products, SOIL stories and offerings and/or inspiration from the garden/kitchen)

EMAIL ME

I only do a personal email list for simplicity and privacy

Microscope analysis for soil health.  Understanding your report!

Soil health is a complex subject and there are many ways to approach it. Biodiversity is a key aspect of soil health with profound impacts on agricultural success and sustainability. Each organism has specific functions that affect the rest of the soil ecosystem, including plants.

Some key functions of a healthy soil ecosystem include:

Good water retention and drainage
Healthy structure and resistance to erosion
Richer, more diverse nutrient cycling and retention
Improved plant health
Increased carbon storage
Resilience against pest and disease outbreaks
The goal of this analysis is to develop a profile of the soil’s ecological status, which considers diversity, the physical characteristics of the soil habitat, and where possible takes into account outside factors such as agricultural activities that can affect, and be affected by, the soil ecosystem.

Observing soil in the microscope can provide great insight into the current ecological status, changes over time or with treatments, and the effectiveness of soil management strategies.

The method
To observe soil in the microscope, samples are mixed with water and then allowed to rest for two days. They are then viewed at 100x and 400x magnification. Bacteria, protozoa, and fungi are observed and recorded along with physical characteristics of the soil and any other organisms that may be present, such as nematodes. Healthy soil should have many different kinds of organisms with populations that are in balance with one another. There should also be visible evidence that the physical habitat supports a complex ecosystem.

Groups of organisms observed with the microscope
The main groups of organisms considered during a microscope analysis are bacteria, fungi, and protozoa. Other organisms that are sometimes observed include nematodes and rotifers.

Bacteria

Bacteria are very small (1 μm), but it is possible to see them at 400x magnification. Bacteria cannot be specifically identified using only a microscope, but we can estimate the abundance and basic characteristics such as spiral, rod, or round shapes, and the type of movement they have, which all give clues about bacterial diversity.

For this analysis, any noticeable signs of bacterial activity and diversity are written down, and an estimate of bacterial biomass is made. This estimate is then compared against the fungal biomass estimate (next section) to determine whether the sample is dominated by bacteria or fungi, or equally balanced. For most agriculture and garden soils, the recommendation is to aim for a 1:1 balance of bacteria and fungi.

Fungi
A variety of robust fungal hyphae found in a sample of forest soil.
Healthy soil typically has robust networks of diverse fungal threads called “hyphae”. In the microscope, these look like clear or brown strands, typically between 2-6 μm in diameter. The length of fungal hyphae varies greatly in prepared samples, and long, robust strands are considered a sign of good conditions in the soil. When disturbance is minimal, fungal networks weave through the soil, extracting nutrients and interacting with plants. They help bind particles together into aggregates, and they provide significant benefits to plants through the exchange of nutrients and much more. Soil fungi develop slowly and are particularly sensitive to disturbance and other stressors, which makes them excellent indicators of the soil’s ecological status. In the microscope, the presence of septate fungal hyphae wider than 3 μm is considered a sign of good growing conditions. Large numbers of light, thin hyphae could be a sign of dense, oxygen-poor soil, which is a less supportive ecosystem for most agricultural crops.

In analysis reports, the fungal biomass estimate is compared with the number of individual fungal hyphae fragments to provide a simple numerical score (total evaluation of fungi / totalvurdering sopp) on a scale of 0-5, where 0 is very poor and 5 is very high. This simplified score is particularly useful for tracking changes over time, or to compare the effect of treatments or soil management techniques.

Protozoa
A large testate amoeba found in a healthy soil sample. Pseudopods or “false feet” extend from the opening at the bottom of the shell, allowing the amoeba to move and capture food.
Protozoa are an incredibly diverse group of single-celled, eukaryotic organisms, which have a predatory role in the soil food web. The role of protozoa in agriculture tends to be underappreciated, perhaps because they are difficult to study, but they are critically important members of the soil food web. For example, bacteria tend to consume a lot of nitrogen and store it in their bodies, but protozoa have little need for nitrogen, so when they consume bacteria they release what they don’t need back into the soil in a form that plants can easily use. Protozoa are voracious predators of bacteria, but they are selective about which species they consume. Each species of protozoa feeds on particular types of bacteria, and in doing so they each play specialized roles in the soil community. This could also mean that protozoa diversity may be an indicator of bacterial diversity in the soil. Protozoa have also been found to promote plant health and disease resistance and improve growth independently of nutrients.

When evaluating protozoa in soil samples, diversity and balance are the top priorities. The ideal sample will have moderate representation from as many groups as possible, with good diversity within those groups. Since it is not feasible to identify all the species of protozoa in a routine analysis, they are instead grouped according to easily observable characteristics. This provides an efficient way to estimate diversity in living, active samples.

We have attempted to create an index that takes into account both the number of groups and the number of organisms within each group. This index is a work in progress, but generally speaking, a more positive result will have several groups and relatively even distribution of individuals within the groups.

What can we do to support soil life?
It is important that we remember to view soil as a habitat and an ecosystem, and to shift our mindset from feeding plants to feeding the soil, which will in turn feed the plants and support them in many other ways.

Here is a summary of the basic conditions that favour beneficial microbial activity in soil and how to provide them:

Microbes need: You can provide it by:
Moisture Keeping the soil covered
Oxygen Allowing natural structure to develop; avoid compaction
Energy and nutrients Maintaining good cover with living plants and mulch; as much diversity as possible
Shelter Keeping the soil covered
Reduced disturbance Minimizing tillage, driving, and chemical interference
Earthworm activity* All of the above
*Earthworms are known as “ecosystem engineers”. Their activity improves soil quality and creates conditions that support beneficial microorganisms.

 

“A rainbow of soil is under our feet; red as a barn and black as a peat. It’s yellow as lemon and white as the snow; bluish gray. So many colors below. Hidden in darkness as thick as the night; The only rainbow that can form without light. Dig you a pit, or bore you a hole, you’ll find enough colors to well rest your soil.” — F.D. Hole, A Rainbow of Soil Words, 1985
From bacteria to fungi, snake-like mini worms, wobbly, jelly-like morphing cellules and hairy racing bubbles and balls the soil is alive, and when healthy, it teams with billions of microorganisms.    These living organisms feed on tiny minerals specks, plant material and each other to release life.   Their dance adds critical nutrients back into the earth.   Without these critters, the soil is nothing other than “dirt”.

When land and gardens are poorly managed and soil is left uncovered, over tilled, and laden with natural and ago chemicals, the beneficial organisms die. What we have failed to understand is plants, bacteria and fungi have a signally system that will adjust for its’ own needs. When we force the pH and neglect and alter this language dance, the biology of the soil dissipates. This results in a poor quality soil that is unable to produce nutrient rich food.  It is well recognised that soils are comprised of physical, chemical and biological properties. However, up until recently,  there has been disproportionate attention given to the chemical and physical side of soils, without due respect given to the biological aspects.   Even organic farmers and gardeners have unknowingly harmed the microbiome of the soil. Good news is we can reverse this with some understanding of what is going on in the soil food web.

Soil is a living, dynamic ecosystem comprising a complex diversity of life.   This diversity is the basis of the fertility of our soil.    Most of us actually have not experienced “food” that is fully alive and at its’ peak due to the biological infrastructure that created it.   But, we are entering a new era of understanding soil as a function of it’s biology and about to understand the taste of nutrition.

Although chemical tests and geophysical analysis of soil are useful for certain circumstances and queries,  biological analysis allows us to ecologically and effectively manage our agroecosystems. So how can we do this?

THE MAGIC OF LIFE UNDER THE MICROSCOPE

Microscope soil tests give us a glimpse into the magical world of soil microbiology that has previously been very abstract and difficult to interact directly with. You are able to see the fungi, protozoa, bacteria and nematodes that play such a vital role in the health of your soil with (relative) ease.

Analysing your soil in this way will allow you to:
 

  • Analyse the quality of your compost/ compost tea 
  • Analyse compaction and anaerobic conditions
  • Find out about diseases before they become a problem
  • Find out about changes in your soil and how effective your techniques are
     

Analysing your soil can be as simple as bringing a sample to our lab for a look down the microscope. This gives us the information to figure out what management techniques are needed, which can then be administered and adjusted accordingly.    

Analysing your soil in this way is efficient, effective and helps you to get more in touch with the biology in your own soils, enabling a deeper understanding of soil functioning. And, crucially, knowledge of your soil will empower you to make the right decisions for you, instead of being dependent on third parties that may not have your best interests at heart.   

It is time we view and treat soil as a living being- in a traditionally regenerative manner – more biological activity is present., more biological activity is introduced. When organic matter is present, the soil can thrive and become the rainbow under our feet now and for generations to come.

It all depends how you look at it. “taking over everything” only logically is true when you look ay the fact that industrial chemical ag is what actually has already “taken over everything” and the unwanted side effects are what human hubris is guilty of picking on. Nature has its systems for cleaning up after itself. According to nature these trees are not worthy of survival. It is cold and it is a hard fact about nature which is unforgiving. Humans are the only species that work to ensure the weak survive. Humanity is based on compassion which strives to give everyone a quality of life no matter what. It is a truly beautiful thing about human nature to do that. But it also means we don’t understand that nature is brutal and about strength and numbers only. We just don’t get it.

Allowing it to do its job means not interfering with practices such as tilling, and certainly not the poisonous practices of injecting fracking 600+ chemicals into the soil by the energy industry, polluting water wells, polluting agricultural land, having cows die, using the big ag chemicals etc.

If all the people, who fight for world hunger, poverty, climate change, could understand what Dr Elaine pioneered in her research, and is called “soil”, this world would place Dr Elaine on all billboards along the freeways and other places, and sing her praises.  Once you fix the soil, you fix food problem, you fix nutrition problems which would eliminate many health problems, you fix air problem, you fix air pollution problems, you fix increasing trends in lung health problems, you name it.  The solution for all this is in one word “soil”. In some ways it is ignorance in other ways it’s arrogance that people are “above” the soil, and feel entitled to destroy it.  In fact, at the end of the day, these tiny creatures rule us.  Talk later.

We especially don’t get it when our livelihood is failing because we aren’t managing the earth with respect, only with a desire for money. It is a hard lesson we are learning. Avocado crops failing, coffee plantations failing, bananas gone sterile. Wine grape crops no longer viable in many parts ot the old country.

This is penance for mankind’s action. I sound heartless by saying it but i believe this to be true. I also believe that if we were to respect mother nature she would also turn around our plight faster than we created it. It just requires a leap of faith and a devotion to be a part of the earth instead of to be on top of it all the time. 

The plebeians and the army drank the posca, a drink despised by the upper class. The posca was made from acetum which was a low quality wine that almost tasted like vinegar. Sometimes wine that got spoiled (because it was not properly stored) would also be used to make this Roman drink.

Posca was made by watering down the low quality wine and by adding herbs and spices. It was drunk from the 300-200 BCE and into the Byzantine period (in the Byzantine army the drink was actually called the phouska). Recent studies have shown that posca was actually quite healthy. It was full of anti-oxidants and vitamin C, the coriander seeds had health benefits, and because it was quite acid (giving it its sour vinegar taste), it killed all the bacteria in the water, bearing in mind that water back then was not clean like our faucet water is today (or at least is in most western countries).

As we previously pointed out, posca was the drink of the common people and the upper class looked down on it. It was also the standard drink in the army. Drinking quality wine was considered impertinent in the military and sometimes standard wine was totally banned from army camps in the provinces.

Roman posca recipe
We don’t know how posca was exactly made but based on what we know, it can be recreated and the recipe is as follows:
Posca recipe
1.5 cups of red wine vinegar.
0.5 cups of honey.
1 tablespoon of crushed coriander seed.
4 cups of water.
Boil it so that the honey disolves.
Let it cool down so that it reaches room temperature.
Filter the coriander seeds.

Your posca is ready to be served. You can get a taste of what the standard drink of the average Roman was like!